J. Mater. Sci. Technol. ›› 2022, Vol. 124: 116-120.DOI: 10.1016/j.jmst.2021.12.021
• Letter • Previous Articles Next Articles
J.Z. Zhanga,b, L.Y. Zengb, X.W. Zuob, J.F. Wanb, Y.H. Rongb, N. Minc, J. Lua,d,*(), N.L. Chenb,*(
)
Revised:
2021-12-01
Published:
2022-10-10
Online:
2022-09-27
Contact:
J. Lu,N.L. Chen
About author:
nlchen@sjtu.edu.cn (N.L. Chen)J.Z. Zhang, L.Y. Zeng, X.W. Zuo, J.F. Wan, Y.H. Rong, N. Min, J. Lu, N.L. Chen. Universality of quenching-partitioning-tempering local equilibrium model[J]. J. Mater. Sci. Technol., 2022, 124: 116-120.
Steel | TA/time | Tq | Tp/time | Sample name |
---|---|---|---|---|
Low carbon | 930 °C/360 s | 290 °C | 400 °C/60 s | Q-P-T (L290-400-60s) |
930 °C/360 s | 320 °C | 400 °C/60 s | Q-P-T (L320-400-60s) | |
930 °C/360 s | 350 °C | 400 °C/60 s | Q-P-T (L350-400-60s) | |
Medium carbon | 850 °C/360 s | 200 °C | 400 °C/120 s | Q-P-T (M200-400-120s) |
850 °C/360 s | 230 °C | 400 °C/120 s | Q-P-T (M230-400-120s) | |
850 °C/360 s | 260 °C | 400 °C/120 s | Q-P-T (M260-400-120s) |
Table 1. Detailed Q-P-T process parameters. TA: austenitization temperature, Tq: quenching temperature, Tp: partitioning/tempering temperature.
Steel | TA/time | Tq | Tp/time | Sample name |
---|---|---|---|---|
Low carbon | 930 °C/360 s | 290 °C | 400 °C/60 s | Q-P-T (L290-400-60s) |
930 °C/360 s | 320 °C | 400 °C/60 s | Q-P-T (L320-400-60s) | |
930 °C/360 s | 350 °C | 400 °C/60 s | Q-P-T (L350-400-60s) | |
Medium carbon | 850 °C/360 s | 200 °C | 400 °C/120 s | Q-P-T (M200-400-120s) |
850 °C/360 s | 230 °C | 400 °C/120 s | Q-P-T (M230-400-120s) | |
850 °C/360 s | 260 °C | 400 °C/120 s | Q-P-T (M260-400-120s) |
Fig. 2. TEM images of Q-P-T samples: (a) Bright field (BF) image indicating η-carbides precipitated from dislocation-type martensite with inserted selective area electron diffraction (SAED) pattern for Q-P-T (L320-400-60s) sample; (b) BF image of RA and martensitic laths and (c) Dark field (DF) image of RA with inserted SAED pattern of the Q-P-T (L320-400-60s) specimen; (d) BF image of η-carbides with inserted SAED pattern for Q-P-T (M230-400-120s) sample; (e) BF image of RA and martensitic laths and (f) DF image of RA with inserted SAED pattern of the Q-P-T (M230-400-120s) specimen. Sketch of the QPT-LE model with dual interfaces migration: (g) initial state and (h) finishing state during partitioning/tempering. η: transition carbide; γ: austenite; α' in (g) refers to primary martensite, α' in (h) refers to primary martensite or bainitic ferrite formed during partitioning/tempering process. Cγ: C content in γ; Cα' : C content in α'; C partitioning from α' to γ results in reduced Cα' and increased Cγ at the finishing state. TKD images of the Q-P-T samples: (i) Q-P-T (L320-400-60s); (j) Q-P-T (M230-400-120s) (red: face-centered cubic (FCC) phase, green: body-centered cubic (BCC) phase).
Fig. 3. Variation of austenite volume fractions during partitioning/tempering process of (a) Q-P-T (L320-400-60s) sample and (b) Q-P-T (M230-400-120s) sample. Variation of C content at the α'/γ interface in austenite during partitioning/tempering process of (c) Q-P-T (L320-400-60s) sample and (d) Q-P-T (M230-400-120s) sample. Volume fraction of carbide and mole fraction of C trapped in carbide as a function of partitioning/tempering time for (e) Q-P-T (L320-400-60s) sample and (f) Q-P-T (M230-400-120s) sample. Variation of austenite volume fractions predicted by the QPT-LE model for (g) low-C Q-P-T samples and (h) medium-C Q-P-T samples quenched to different temperatures.
Samples | VRA (%) | Cγ (wt.%) | ||||||
---|---|---|---|---|---|---|---|---|
XRD | QPT-LE | QP-LE | CCE | XRD | QPT-LE | QP-LE | CCE | |
Q-P-T (L290-400-60s) | 6.5 ± 0.8 | 6.4 | 8.7 | 3.6 | 1.26±0.03 | 1.35 | 1.35 | 0.63 |
Q-P-T (L320-400-60s) | 6.9 ± 0.6 | 7.1 | 9.2 | 2.6 | 1.24±0.04 | 1.35 | 1.35 | 0.45 |
Q-P-T (L350-400-60s) | 7.2 ± 0.9 | 7.9 | 9.9 | 2.2 | 1.21±0.03 | 1.35 | 1.35 | 0.32 |
Q-P-T (M200-400-120s) | 13.6 ± 0.8 | 14.6 | 22.6 | 18.2 | 1.28±0.05 | 1.40 | 1.40 | 1.23 |
Q-P-T (M230-400-120s) | 14.8 ± 0.9 | 15.2 | 23.5 | 11.8 | 1.25±0.04 | 1.40 | 1.40 | 0.88 |
Q-P-T (M260-400-120s) | 15.2 ± 1.1 | 16.1 | 24.2 | 7.5 | 1.23±0.04 | 1.40 | 1.40 | 0.63 |
Table 2. VRA and Cγ of Q-P-T samples measured by experiments and calculated by different models.
Samples | VRA (%) | Cγ (wt.%) | ||||||
---|---|---|---|---|---|---|---|---|
XRD | QPT-LE | QP-LE | CCE | XRD | QPT-LE | QP-LE | CCE | |
Q-P-T (L290-400-60s) | 6.5 ± 0.8 | 6.4 | 8.7 | 3.6 | 1.26±0.03 | 1.35 | 1.35 | 0.63 |
Q-P-T (L320-400-60s) | 6.9 ± 0.6 | 7.1 | 9.2 | 2.6 | 1.24±0.04 | 1.35 | 1.35 | 0.45 |
Q-P-T (L350-400-60s) | 7.2 ± 0.9 | 7.9 | 9.9 | 2.2 | 1.21±0.03 | 1.35 | 1.35 | 0.32 |
Q-P-T (M200-400-120s) | 13.6 ± 0.8 | 14.6 | 22.6 | 18.2 | 1.28±0.05 | 1.40 | 1.40 | 1.23 |
Q-P-T (M230-400-120s) | 14.8 ± 0.9 | 15.2 | 23.5 | 11.8 | 1.25±0.04 | 1.40 | 1.40 | 0.88 |
Q-P-T (M260-400-120s) | 15.2 ± 1.1 | 16.1 | 24.2 | 7.5 | 1.23±0.04 | 1.40 | 1.40 | 0.63 |
[1] |
J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611-2622.
DOI URL |
[2] |
E.J. Seo, L. Cho, Y. Estrin, B.C. De Cooman, Acta Mater. 113 (2016) 124-139.
DOI URL |
[3] |
Z.B. Dai, H. Chen, R. Ding, Q. Lu, C. Zhang, Z.G. Yang, S. van der Zwaag, Mater. Sci. Eng. R 143 (2021) 100590.
DOI URL |
[4] |
D.H. Kim, J.H. Kang, H. Gwon, J.H. Ryu, S.J. Kim, J. Mater. Sci. Technol. 98 (2022) 248-257.
DOI URL |
[5] |
G.H. Gao, H. Zhang, X.L. Gui, Z.L. Tan, B.Z. Bai, J. Mater. Sci. Technol. 31 (2015) 199-204.
DOI URL |
[6] |
T.Y. Hsu, Z.Y. Xu, Mater. Sci. Forum 561-565 (2007) 2283-2286.
DOI URL |
[7] |
N. Zhong, X.D. Wang, L. Wang, Y.H. Rong, Mat. Sci. Eng. A 506 (2009) 111-116.
DOI URL |
[8] |
J.Z. Zhang, Y.G. Cui, X.W. Zuo, J.F. Wan, Y.H. Rong, N.L. Chen, J. Lu, Sci. Bull. 66 (2021) 1058-1062.
DOI URL |
[9] | Y. Wang, Z.H. Guo, N.L. Chen, Y.H. Rong, J. Mater. Sci. Technol. 29 (2013) 451-457. |
[10] |
Y.Y. Song, J.P. Cui, L.J. Rong, J. Mater. Sci. Technol. 32 (2016) 189-193.
DOI URL |
[11] | N. Zhong, X.D. Wang, Y.H. Rong, L. Wang, J. Mater. Sci. Technol. 22 (2006) 751-754. |
[12] |
A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Acta Mater. 56 (2008) 16-22.
DOI URL |
[13] |
M.J. Santofimia, J.G. Speer, A.J. Clarke, L. Zhao, J. Sietsma, Acta Mater. 57 (2009) 4548-4557.
DOI URL |
[14] |
D. De Knijf, M.J. Santofimia, H. Shi, V. Bliznuk, C. Föjer, R. Petrov, W. Xu, Acta Mater. 90 (2015) 161-168.
DOI URL |
[15] |
Y. Li, S. Chen, C.C. Wang, D.S. Martín, W. Xu, Acta Mater. 188 (2020) 528-538.
DOI URL |
[16] | F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Acta Mater. 104 (2016) 72-83. |
[17] |
A.S. Nishikawa, G. Miyamoto, T. Furuhara, A.P. Tschiptschin, H. Goldenstein, Acta Mater. 179 (2019) 1-16.
DOI |
[18] |
D.T. Pierce, D.R. Coughlin, D.L. Williamson, J. Kähkönen, A.J. Clarke, K.D. Clarke, J.G. Speer, E. De Moor, Scr. Mater. 121 (2016) 5-9.
DOI URL |
[19] |
Y. Toji, G. Miyamoto, D. Raabe, Acta Mater. 86 (2015) 137-147.
DOI URL |
[20] |
A.J. Clarke, M.K. Miller, R.D. Field, D.R. Coughlin, P.J. Gibbs, K.D. Clarke, D. J. Alexander, K.A. Powers, P.A. Papin, G. Krauss, Acta Mater. 77 (2014) 17-27.
DOI URL |
[21] |
A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds, M.J. Santofimia, Scr. Mater. 61 (2009) 149-152.
DOI URL |
[22] |
Z.B. Dai, R. Ding, Z.G. Yang, C. Zhang, H. Chen, Acta Mater. 144 (2018) 666-678.
DOI URL |
[23] |
Z.B. Dai, R. Ding, Z.G. Yang, C. Zhang, H. Chen, Acta Mater. 152 (2018) 288-299.
DOI URL |
[24] |
Z.B. Dai, Z.G Yang, C. Zhang, H. Chen, Acta Mater. 200 (2020) 597-607.
DOI URL |
[25] |
J.Z. Zhang, Z.B. Dai, L.Y. Zeng, X.W. Zuo, J.F. Wan, Y.H. Rong, N.L. Chen, J. Lu, H. Chen, Acta Mater. 217 (2021) 117176.
DOI URL |
[26] |
Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, D. Raabe, Acta Mater. 65 (2014) 215-228.
DOI URL |
[27] | D. Dyson, J. Iron Steel Inst. 208 (1970) 469-474. |
[28] |
A. Barrow, J.H. Kang, P. Rivera-Díaz-del-Castillo, Acta Mater. 60 (2012) 2805-2815.
DOI URL |
[29] |
M.J. Santofimia, R.H. Petrov, L. Zhao, J. Sietsma, Mater. Charact. 92 (2014) 91-95.
DOI URL |
[1] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
[2] | Zhipeng Sun, Fuzhi Dai, Ben Xu, Wenzheng Zhang. Dislocation-mediated migration of nterphase boundaries [J]. J. Mater. Sci. Technol., 2019, 35(11): 2714-2726. |
[3] | Yang Zenan, Xu Wei, Yang Zhigang, Zhang Chi, Chen Hao, van der Zwaag Sybrand. Predicting the Transition between Upper and Lower Bainite via a Gibbs Energy Balance Approach [J]. J. Mater. Sci. Technol., 2017, 33(12): 1513-1521. |
[4] | Zhengfei HU, Xingfang WU, Chunxu WANG. HRTEM Study on Precipitates in High Co-Ni Steel [J]. J Mater Sci Technol, 2004, 20(04): 425-428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||