J. Mater. Sci. Technol. ›› 2022, Vol. 117: 65-71.DOI: 10.1016/j.jmst.2021.11.043
• Review Article • Previous Articles Next Articles
Yan Zhanga, Chengjie Lua,*(), Yun Dongb, Min Zhouc, Jiandang Liub, Hongjun Zhangb, Bangjiao Yeb,*(
), ZhengMing Suna,*(
)
Received:
2021-10-27
Revised:
2021-11-19
Accepted:
2021-11-28
Published:
2022-02-01
Online:
2022-08-01
Contact:
Chengjie Lu,Bangjiao Ye,ZhengMing Sun
About author:
zmsun@seu.edu.cn (Z. Sun).Yan Zhang, Chengjie Lu, Yun Dong, Min Zhou, Jiandang Liu, Hongjun Zhang, Bangjiao Ye, ZhengMing Sun. Insights into the dual-roles of alloying elements in the growth of Sn whiskers[J]. J. Mater. Sci. Technol., 2022, 117: 65-71.
Fig. 1. Surface morphologies of the Ti2SnC/Sn-X samples after cultivated at specific parameters: (a) Ti2SnC/Sn, 40 °C/1 h; (b) Ti2SnC/Sn-X (X = Bi, Pb, Ga), 40 °C/1 day; (c) Ti2SnC/Sn, 200 °C/1 h; (d) Ti2SnC/Sn-Bi, 200 °C/1 h; (e) Ti2SnC/Sn-Ga, 200 °C/1 h; (f) Ti2SnC/Sn-Pb, 200 °C/1 day.
Fig. 2. Characterization of the whiskers grown from Ti2SnC: (a) morphology observation and microstructure characterization; (b) statistical results of whisker density from Ti2SnC/Sn-X.
Fig. 3. Microstructure characterization of the whisker root: (a) cross-section morphology of the whisker root excavated by FIB technique; (b) fabricated TEM samples of the whisker root, showing the distribution morphology of Sn whisker (red), excess Sn-Bi alloy (blue) and TiC impurity phase (green), together with the distribution morphology of Ti, Sn and Bi elements.
Fig. 4. Microstructure characterization of the interface observed in the TEM sample: (a) TEM image of the interface between the extruded Sn whisker and Ti2SnC substrate; (b) TEM image of the interface between the excess Sn-Bi alloy and Ti2SnC substrate; (c, d) corresponding HRTEM images of the two interfaces, respectively.
Fig. 5. Whiskering behaviors of [Sn-X] samples after cultivated at 25 °C for 1 h: (a) cross-section microstructure; (b) surface of the reference sample (thin Ti2SnC/Sn); (c) whiskers on Ti2SnC/Sn; (d) whiskers on [Sn-Bi]; (e) whiskers on [Sn-Pb]; (f) whiskers on [Sn-Ga].
Fig. 6. In-situ observation of Sn whiskers grown from Ti2SnC/Sn-xBi (x = 0, 3, 6, 9) samples: (a) initial morphology of the observed whisker on Ti2SnC/Sn; (b) initial morphology of the observed whisker on Ti2SnC/Sn-6Bi; (c) final morphology after holding at 90 °C for 60 s on Ti2SnC/Sn; (d) final morphology after holding at 90 °C for 60 s on Ti2SnC/Sn-6Bi; (e) in-situ statistical results of the whiskers grown from Ti2SnC/Sn-xBi (x = 0, 3, 6, 9) samples.
Fig. 7. Mobility analysis of source Sn atoms: (a) positron annihilation lifetime spectra collected for Sn-X alloys; (b) positron trapping rate κ (left in red) and average positron lifetime parameters τav (right in blue); (c) calculated formation energy of a Sn vacancy in Sn-X supercells; (d) migration energy.
Fig. 8. Driving force analysis of source Sn atoms: (a) relationship between stress and vacancy formation energy; (b) effect of defect types on the formation enthalpy of β-Sn phase.
[1] |
K.G. Compton, A. Mendizza, S.M. Arnold, Corrosion 7 (1951) 327-334.
DOI URL |
[2] |
S. Tian, Y.S. Liu, P.G. Zhang, J. Zhou, F. Xue, Z.M. Sun, J. Mater. Sci. Technol. 80 (2021) 191-202.
DOI URL |
[3] |
W. Shim, J. Ham, K.I. Lee, W.Y. Jeung, W. Lee, Nano Lett. 9 (2008) 18-22.
DOI URL |
[4] |
A. Kosinova, D. Wang, P. Schaaf, A. Sharma, L. Klinger, E. Rabkin, Acta Mater. 149 (2018) 154-163.
DOI URL |
[5] |
M. Saka, F. Yamaya, H. Tohmyoh, Scr. Mater. 56 (2007) 1031-1034.
DOI URL |
[6] |
Y. Mizuguchi, Y. Murakami, S. Tomiya, T. Asai, T. Kiga, K. Suganuma, J. Electron. Mater. 41 (2012) 1859-1867.
DOI URL |
[7] |
T. Shibutani, Y. Qiang, M. Shiratori, G.P. Michael, Microelectron. Reliab. 48 (2008) 1033-1039.
DOI URL |
[8] | H. Hu, G. Fu, G. Xu, Y. Shi, Y. Song, Rare Met. Mater. Eng. 41 (2012) 1421-1425. |
[9] | J. Smetana, IEEE Trans. Electron. Packag. 30 (2007) 11-12. |
[10] | G. Galyon, IEEE Trans. Compon. Packag. Manuf. 1 (2011) 1098-1109. |
[11] | E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, K.S. Kumar, Appl. Phys. Lett. 92 (2008) 94-216. |
[12] |
M.A. Dudek, N. Chawla, Acta Mater. 57 (2009) 4588-4599.
DOI URL |
[13] |
J.J. Williams, N.C. Chapman, N. Chawla, J. Electron. Mater. 42 (2013) 224-229.
DOI URL |
[14] |
M.W. Barsoum, L. Farber, Science 284 (1999) 937-939.
PMID |
[15] | T. El-Raghy, M.W. Barsoum, Science 285 (1999) 1357. |
[16] | K.W. Moon, C.E. Johnson, M.E. Williams, O. Kongstein, G.R. Stafford, C.A. Handwerker, W.J. Boettinger, J. Electron. Mater. 43 (2005) L31-L33. |
[17] | Y. Liu, P. Zhang, J. Yu, J. Chen, Y. Zhang, Z.M. Sun, J. Mater. Sci. Technol. 35 (2019) 1735-1739. |
[18] |
M.W. Barsoum, E.N. Hoffman, R.D. Doherty, S. Gupta, A. Zavaliangos, Phys. Rev. Lett. 93 (2004) 206104.
DOI URL |
[19] |
P. Zhang, Y.M. Zhang, Z.M. Sun, J. Mater. Sci. Technol. 31 (2015) 675-698.
DOI URL |
[20] |
E. Chason, N. Jadhav, F. Pei, E. Buchovecky, A. Bower, Prog. Surf. Sci. 88 (2013) 103-131.
DOI URL |
[21] |
Y. Liu, C. Lu, P. Zhang, J. Yu, Y. Zhang, Z.M. Sun, Acta Mater. 185 (2020) 433-440.
DOI URL |
[22] |
C. Lu, Y. Liu, J. Fang, Y. Zhang, Z.M. Sun, Acta Mater. 203 (2021) 116475.
DOI URL |
[23] | T.A. Woodrow, in: Proceedings of the SMTA International Conference, Rose- mont, IL, U.S., 2006 September 24-28. |
[24] | P. Kirkegaard, N.J. Pedersen, M. Eldrup, in: PATFIT-88:a Data-Processing System for Position Annihilation Spectra on Mainframe and Personal Computers, RisøNational Laboratory, Roskilde, Denmark, 1989, p. 134. |
[25] | P. Kirkegaard, M. Eldrup, O. E.Mogensen, N.J. Pedersen, Comput. Phys. Com- mun. 23 (1981) 307-335. |
[26] |
K. Carling, G. Wahnstrom, T.R. Mattsson, A.E. Mattsson, N. Sandberg, G. Grim- vall, Phys. Rev. Lett. 85 (2000) 3862-3865.
PMID |
[27] | G. Thiering, A. Gali, Phys. Rev. X 8 (2018) 021063. |
[28] |
T.R. Mattsson, A.E. Mattsson, Phys. Rev. B 66 (2002) 214110.
DOI URL |
[29] |
S.G. Lee, K.J. Chang, Phys. Rev. B 53 (1996) 9784.
PMID |
[30] |
Y. Liu, P. Zhang, Y.M. Zhang, J. Ding, J.J. Shi, Z.M. Sun, Mater. Lett. 178 (2016) 111-114.
DOI URL |
[31] |
C. Li, Z. Liu, Acta Mater. 61 (2013) 589-601.
DOI URL |
[32] |
P. Zhang, Y. Liu, J. Ding, Y.M. Zhang, J.L. Yan, B. An, T. Iijima, Z.M. Sun, Phys. B 475 (2015) 90-98.
DOI URL |
[33] | S.M. Arnold, in: Proceedings of the Electronic Components and Technology Conference, 1959, pp. 75-82. |
[34] |
S.F. Cheng, C.M. Huang, M. Pecht, Microelectron. Reliab. 75 (2017) 77-95.
DOI URL |
[35] |
S. Dutta, M. Chakrabarti, S. Chattopadhyay, D. Jana, D. Sanyal, A. Sarkar, J. Appl. Phys. 98 (2005) 053513.
DOI URL |
[36] |
K. Saarinen, P. Seppälä, J. Oila, P. Hautojärvi, C. Corbel, O. Briot, R.L. Aulombard, Appl. Phys. Lett. 73 (1998) 3253-3255.
DOI URL |
[37] |
K. Ye, K. Li, Y. Lu, Z. Guo, N. Li, H. Liu, Y. Huang, H. Ji, P. Wang, TrAC Trend Anal. Chem. 116 (2019) 102-108.
DOI URL |
[38] |
B. Gu, Z. Li, J. Liu, H. Zhang, B. Ye, Appl. Phys. Lett. 115 (2019) 192106.
DOI URL |
[39] |
X. Ning, X. Cao, C. Li, D. Li, P. Zhang, Y. Gong, R. Xia, B. Wang, L. Wei, Nucl. Instrum. Methods B 397 (2017) 75-81.
DOI URL |
[40] |
M. Eldrup, B.N. Singh, J. Nucl. Mater. 323 (2003) 346-353.
DOI URL |
[41] | A. Glensk, B. Grabowski, T. Hickel, J. Neugebauer, Phys. Rev. X 4 (2014) 011018. |
[42] |
V. Krsjak, J. Kuriplach, C. Vieh, L. Peng, Y. Dai, J. Nucl. Mater. 504 (2018) 277-280.
DOI URL |
[43] | P. Hautojärvi, A. Dupasquier, in:Positrons in Solids, Springer-Verlag Berlin Hei- delberg, New York, 1979, pp. 5-14. |
[44] |
C. Persson, Y.J. Zhao, S. Lany, A. Zunger, Phys. Rev. B 72 (2005) 035211.
DOI URL |
[1] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[2] | Heng Ma, Xin Liu, Ning Liu, Yan Zhao, Yongguang Zhang, Zhumabay Bakenov, Xin Wang. Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 115(0): 140-147. |
[3] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
[4] | Xinyuan Lv, Fang Ye, Laifei Cheng, Litong Zhang. 3D printing “wire-on-sphere” hierarchical SiC nanowires / SiC whiskers foam for efficient high-temperature electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 109(0): 94-104. |
[5] | Zheng Zhang, Ying Huang, Xiang Li, Zhiming Zhou. Rational construction of hollow nanoboxes for long cycle life alkali metal ion batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 46-55. |
[6] | Keqiang Zhang, Qiaoyu Meng, Xueqin Zhang, Zhaoliang Qu, Rujie He. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography [J]. J. Mater. Sci. Technol., 2022, 118(0): 144-157. |
[7] | Vladimir Krsjak, Tielong Shen, Jarmila Degmova, Stanislav Sojak, Erik Korpas, Pavol Noga, Werner Egger, Bingsheng Li, Vladimir Slugen, Frank A. Garner. On the helium bubble swelling in nano-oxide dispersion-strengthened steels [J]. J. Mater. Sci. Technol., 2022, 105(0): 172-181. |
[8] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
[9] | Y.J. Duan, L.T. Zhang, T. Wada, H. Kato, E. Pined, D. Crespo, J.M. Pelletier, J.C. Qiao. Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery [J]. J. Mater. Sci. Technol., 2022, 107(0): 82-91. |
[10] | Wei-Jian Li, Zi-Yao Chen, Hao Jiang, Xiao-Han Sui, Cong-Fei Zhao, Liang Zhen, Wen-Zhu Shao. Effects of interfacial wettability on arc erosion behavior of Zn2SnO4/Cu electrical contacts [J]. J. Mater. Sci. Technol., 2022, 109(0): 64-75. |
[11] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[12] | Shuang Tian, Yushuang Liu, Peigen Zhang, Jian Zhou, Feng Xue, ZhengMing Sun. Tin whiskers prefer to grow from the [001] grains in a tin coating on aluminum substrate [J]. J. Mater. Sci. Technol., 2021, 80(0): 191-202. |
[13] | Tong Yang, Yi Kong, Jiangbo Lu, Zhenjun Zhang, Mingjun Yang, Ning Yan, Kai Li, Yong Du. Self-accommodated defect structures modifying the growth of Laves phase [J]. J. Mater. Sci. Technol., 2021, 62(0): 203-213. |
[14] | Sheng Guo, Zhixiong Yang, Huali Zhang, Wei Yang, Jun Li, Kun Zhou. Enhanced photocatalytic degradation of organic contaminants over CaFe2O4 under visible LED light irradiation mediated by peroxymonosulfate [J]. J. Mater. Sci. Technol., 2021, 62(0): 34-43. |
[15] | Yuchen Chi, Feng Chen, Hangning Wang, Fengxiang Qin, Haifeng Zhang. Highly efficient degradation of acid orange II on a defect-enriched Fe-based nanoporous electrode by the pulsed square-wave method [J]. J. Mater. Sci. Technol., 2021, 92(0): 40-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||