J. Mater. Sci. Technol. ›› 2022, Vol. 102: 46-55.DOI: 10.1016/j.jmst.2021.07.007
• Research Article • Previous Articles Next Articles
Zheng Zhanga, Ying Huanga,*(), Xiang Lia, Zhiming Zhoub
Received:
2021-06-12
Revised:
2021-07-11
Accepted:
2021-07-12
Published:
2022-03-10
Online:
2021-08-27
Contact:
Ying Huang
About author:
*E-mail address: yingh@nwpu.edu.cn (Y. Huang).Zheng Zhang, Ying Huang, Xiang Li, Zhiming Zhou. Rational construction of hollow nanoboxes for long cycle life alkali metal ion batteries[J]. J. Mater. Sci. Technol., 2022, 102: 46-55.
Fig. 4. Electrochemical performance for SIBs: (a) CV curves of CoZn-O2, (b) GCD curves of CoZn-O2, cycle performance of metal oxides at a current density of (c) 0.2 A g-1 and (f) 1.0 A g-1, (d) rate performance, (e) EIS curves, (g) long-term cycling performance of CoZn-O2 at 1.0 A g-1.
Fig. 5. Electrochemical kinetics analysis for SIBs: (a) CV curves at various scan rates, (b) capacitive contributions at 1.0 mV s-1, (c) EIS curves after 1000 cycles at 1.0 A g-1, (e) GITT curves of CoZn-O2 electrode, (f) Na+ diffusion coefficient. FESEM TEM images of CoZn-O2 electrode after cycling at 1.0 A g-1: (g) 1000 cycles, (h) 2000 cycles and (i) 10000 cycles.
Fig. 6. Electrochemical performance for LIBs: (a) GCD curves of CoZn-O2, cycle performance at a current density of (b) 0.2 A g-1 and (d) 1.0 A g-1, (c) rate performance, (e) CV curves at various scan rates, (f) capacitive contributions at 1.0 mV s-1, (g) capacitive contribution at various scan rates, (h) FESEM and (g) TEM images of CoZn-O2 electrode after 2000 cycles at 1.0 A g-1.
Fig. 7. Electrochemical performance for PIBs: (a) GCD curves of CoZn-O2, cycle performance at a current density of (b) 0.1 A g-1 and (d) 0.5 and 1.0 A g-1, (c) rate performance, (e) CV curves at various scan rates, (f) capacitive contributions at 1.0 mV s-1, (g) capacitive contribution at various scan rates, (h) FESEM and (g) TEM images of CoZn-O2 electrode after 5000 cycles at 1.0 A g-1.
Fig. 8. Calculated DOS of (a) ZnO, (b) Co3O4 and (c) CoZn-O2, dashed line corresponds to the position of the Fermi level. (d-e) Comparison of electrochemical performance between our work and previous work. Electrochemical performance of the full-cell, (g) working diagram, (h) LCO//CoZn-O2, (i) NVP//CoZn-O2.
[1] |
Z. Zhang, Y. Huang, H. Gao, C. Li, J. Hang, P. Liu, J. Energy Chem. 60 (2021) 259-271.
DOI URL |
[2] | Z. Zhang, Y. Huang, H. Gao, C. Li, J. Huang, P. Liu, J. Membr. Sci. 621 (2021) 118940. |
[3] | J. Zhou, Q. Shi, S. Ullah, X. Yang, A. Bachmatiuk, R. Yang, M.H. Rummeli, Adv. Funct. Mater. 30 (2020) 2004648. |
[4] |
C. Chen, Y. Huang, Z. Meng, M. Lu, Z. Xu, P. Liu, T. Li, Carbon 170 (2020) 225-235.
DOI URL |
[5] | P. Zhou, J.Z. Sheng, C.W. Gao, J. Dong, Q.Y. An, L.Q. Mai, Acta Phys.-Chim.Sin. 36 (2020) 1906046. |
[6] |
G. Suo, D. Li, L. Feng, X. Hou, X. Ye, L. Zhang, Q. Yu, Y. Yang, W. Wang, J. Mater. Sci. Technol. 55 (2020) 167-172.
DOI URL |
[7] |
X. Shi, Z. Xu, C. Han, R. Shi, X. Wu, B. Lu, J. Zhou, S. Liang, Nano-Micro Lett 13 (2020) 21.
DOI URL |
[8] | W. Zhu, A. Li, Z. Wang, J. Yang, Y. Xu, Small 17 (2021) 2006424. |
[9] |
H. Ding, J. Zhou, A.M. Rao, B. Lu, Natl. Sci. Rev. (2020), doi: 10.1093/nsr/ nwaa276.
DOI |
[10] |
C. Chen, Y. Huang, Z. Meng, M. Lu, Z. Xu, P. Liu, T. Li, J. Mater. Sci. Technol. 76 (2021) 11-19.
DOI |
[11] | S.Z. Guo, J.Z. Liu, C.C. Zhou, P.L. Zhang, S. Li, Y. Yang, L.Y. Chen, J. Alloys Compd. 814 (2020) 152305. |
[12] |
L. Xu, P. Xiong, L. Zeng, Y. Fang, R. Liu, J. Liu, F. Luo, Q. Chen, M. Wei, Q. Qian, Nanoscale 11 (2019) 16308-16316.
DOI URL |
[13] |
G. Fang, J. Zhou, Y. Cai, S. Liu, X. Tan, A. Pan, S. Liang, J. Mater. Chem. A 5 (2017) 13983-13993.
DOI URL |
[14] | Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Adv. Energy Mater. 6 (2016) 1502175. |
[15] | Z. Zhang, Y. Huang, X. Li, S. Zhang, Q. Jia, T. Li, Chem. Eng. J. 421 (2021) 129827. |
[16] |
Y.F. Yuan, F. Chen, L.W. Ye, G.S. Cai, M. Zhu, S.M. Yin, S.Y. Guo, J. Alloys Compd. 790 (2019) 814-821.
DOI URL |
[17] |
S.-H. Yu, S.H. Lee, D.J. Lee, Y.-E. Sung, T. Hyeon, Small 12 (2016) 2146-2172.
DOI URL |
[18] |
L. Lu, H.-y. Wang, J.-G. Wang, C. Wang, Q.-C. Jiang, J. Mater. Chem. A 5 (2017) 2530-2538.
DOI URL |
[19] |
T.V. Thi, A.K. Rai, J. Gim, J. Kim, J. Power Sources 292 (2015) 23-30.
DOI URL |
[20] | M. Wang, Y. Huang, Y. Zhu, N. Zhang, J. Zhang, X. Qin, H. Zhang, Electrochim. Acta 335 (2020) 135694. |
[21] | Z.-X. Cai, Z.-L. Wang, J. Kim, Y. Yamauchi, Adv. Mater. 31 (2019) 1804903. |
[22] | Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, X. Sun, Energy Storage Mater. 2 (2016) 35-62. |
[23] | G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao, T. Lin, Y. Chen, C. Wang, A. Pan, S. Liang, Adv. Energy Mater. 8 (2018) 1703155. |
[24] |
Y. Huang, Y. Fang, X.F. Lu, D. Luan, X.W. Lou, Angew. Chem.-Int. Edit. 59 (2020) 19914-19918.
DOI URL |
[25] |
T. Zhou, S. Cao, R. Zhang, T. Fei, T. Zhang, Inorg. Chem. Front. 6 (2019) 3177-3183.
DOI URL |
[26] |
J. Wang, G. Zhu, Z. Zhang, Y. Wang, H. Wang, J. Bai, G. Wang, Chemistry-A European Journal, 27 (2021) 1713-1723.
DOI URL |
[27] |
C. Chen, Y. Huang, Z. Meng, Z. Xu, P. Liu, T. Li, J. Energy Chem. 54 (2021) 482-492.
DOI URL |
[28] |
Z. Zhang, Y. Huang, X. Liu, X. Wang, P. Liu, ACS Sustain. Chem. Eng. 8 (2020) 8381-8390.
DOI URL |
[29] | Z. Zhang, Y. Huang, X. Liu, X. Wang, P. Liu, Electrochim. Acta 342 (2020) 136104. |
[30] |
M.K. Aslam, S.S.A. Shah, S. Li, C. Chen, J. Mater. Chem. A 6 (2018) 14083-14090.
DOI URL |
[31] | Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W.-B. Cai, Z. Yang, G. Zheng, Adv. Energy Mater. 4 (2014) 1400696. |
[32] |
C. Yan, G. Chen, X. Zhou, J. Sun, C. Lv, Adv. Funct. Mater. 26 (2016) 1428-1436.
DOI URL |
[33] |
J. Liu, D. Xue, Adv. Mater. 20 (2008) 2622-2627.
DOI URL |
[34] |
H. Guo, T. Li, W. Chen, L. Liu, X. Yang, Y. Wang, Y. Guo, Nanoscale 6 (2014) 15168-15174.
DOI URL |
[35] |
Q. Zhou, Q. Zhao, W. Xiong, X. Li, J. Li, L. Zeng, J. Colloid Interface Sci. 516 (2018) 76-85.
DOI URL |
[36] |
J. Xu, L. He, W. Xu, H. Tang, H. Liu, T. Han, C. Zhang, Y. Zhang, Electrochim. Acta 145 (2014) 185-192.
DOI URL |
[37] |
Z. Zhang, Y. Huang, X. Li, X. Gao, P. Liu, T. Li, J. Mater. Chem. A 9 (2021) 6284-6297.
DOI URL |
[38] |
Y. Song, M. Zhao, Z. Pan, L. Jiang, Y. Jiang, B. Fu, J. Xu, L. Hu, J. Alloys Compd. 783 (2019) 455-459.
DOI URL |
[39] |
M. Islam, G. Ali, M.-G. Jeong, H.-S. Kim, W. Choi, K.Y. Chung, H.-G. Jung, Nanoscale 11 (2019) 1065-1073.
DOI URL |
[40] |
Q. Ru, D. Zhao, L. Guo, S. Hu, X. Hou, J. Mater. Sci. -Mater. Electron. 28 (2017) 15451-15456.
DOI URL |
[41] |
S. Zhao, Y. Wang, R. Liu, Y. Yu, S. Wei, F. Yu, Q. Shen, J. Mater. Chem. A 3 (2015) 17181-17189.
DOI URL |
[42] |
G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen, Z. Wang, A. Pan, S. Liang, ACS Nano 13 (2019) 5635-5645.
DOI URL |
[43] |
Z. Zhang, Y. Huang, X. Liu, C. Chen, Z. Xu, P. Liu, Carbon 157 (2020) 244-254.
DOI URL |
[44] |
J. Ye, X. Li, G. Xia, G. Gong, Z. Zheng, C. Chen, C. Hu, J. Mater. Sci. Technol. 77 (2021) 100-107.
DOI URL |
[45] | L. Li, Q. Wang, X. Zhang, L. Fang, X. Li, W. Zhang, Appl. Surf. Sci. 508 (2020) 145295. |
[46] |
W.-T. Koo, H.-Y. Jang, C. Kim, J.-W. Jung, J.Y. Cheong, I.-D. Kim, J. Mater. Chem. A 5 (2017) 22717-22725.
DOI URL |
[47] | J. Deng, X. Yu, X. Qin, B. Liu, Y.-B. He, B. Li, F. Kang, Energy Storage Mater 11 (2018) 184-190. |
[48] | Y. Lin, L. Zhang, H. Liu, Int. J. Hydrog. Energy 45 (2020) 6 874-6 884. |
[49] |
F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang, Y. Huang, Adv. Mater. 26 (2014) 6622-6628.
DOI URL |
[50] | P. Gao, Q. Ru, Z. Pan, J. Zhang, W. Xu, F. Chi-Chung Ling, L. Wei, J. Colloid In-terface Sci. 599 (2021) 730-740. |
[1] | Sheng Guo, Zhixiong Yang, Huali Zhang, Wei Yang, Jun Li, Kun Zhou. Enhanced photocatalytic degradation of organic contaminants over CaFe2O4 under visible LED light irradiation mediated by peroxymonosulfate [J]. J. Mater. Sci. Technol., 2021, 62(0): 34-43. |
[2] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
[3] | Zhengkun Xie, Xiaowei An, Zhijun Wu, Xiyan Yue, Jiajia Wang, Xiaogang Hao, Abuliti Abudula, Guoqing Guan. Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 119-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||