J. Mater. Sci. Technol. ›› 2022, Vol. 102: 36-45.DOI: 10.1016/j.jmst.2021.04.037
• Research Article • Previous Articles Next Articles
Fuyu Donga, Yuexin Chua, Mengyuan Hea,b, Yue Zhanga,*(), Weidong Lic,*(
), Peter K. Liawc,*(
), Binbin Wangd, Liangshun Luodd, Yanqing Sud, Robert O. Ritchiee, Xiaoguang Yuana
Received:
2021-03-15
Revised:
2021-04-05
Accepted:
2021-04-10
Published:
2022-03-10
Online:
2021-06-17
Contact:
Yue Zhang,Weidong Li,Peter K. Liaw
About author:
pliaw@utk.edu (P.K.Liaw).Fuyu Dong, Yuexin Chu, Mengyuan He, Yue Zhang, Weidong Li, Peter K. Liaw, Binbin Wang, Liangshun Luod, Yanqing Su, Robert O. Ritchie, Xiaoguang Yuan. Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation[J]. J. Mater. Sci. Technol., 2022, 102: 36-45.
Fig. 1. Representative nanoindentation load-displacement (P-h) curves of the Zr55Cu30Ni5Al10 BMGs with various H contents. The inset shows different pop-in phenomena at the end of loading. The term UC refers to BMGs with uncharged H.
Fig. 4. Typical displacement versus holding time curves for the Zr55Cu30Ni5Al10 BMGs with various H contents, showing (a) the division of the two-stage creep, and (b) the fitting of the curves using the elastic-viscoelastic-viscous (EVEV) model.
Alloy | H content CH(wt.%) | he(nm) | h1(nm) | τ1(s) | h2(nm) | τ2(s) | μ0(s/nm) | R2 |
---|---|---|---|---|---|---|---|---|
Zr55Cu30Al10Ni5 | 0 | 1086.7 | 2.34 | 3.08 | 4.37 | 28.12 | 18.27 | 0.99737 |
0.021 | 1089.3 | 3.77 | 4.74 | 4.18 | 50.57 | 19.97 | 0.99621 | |
0.026 | 1089.9 | 5.79 | 2.15 | 4.61 | 37.69 | 20.56 | 0.99705 |
Table 1 Fitting parameters of the nanoindentation-creep curves of the Zr55Cu30Al10Ni5 BMGs with various H contents using Eq. (1).
Alloy | H content CH(wt.%) | he(nm) | h1(nm) | τ1(s) | h2(nm) | τ2(s) | μ0(s/nm) | R2 |
---|---|---|---|---|---|---|---|---|
Zr55Cu30Al10Ni5 | 0 | 1086.7 | 2.34 | 3.08 | 4.37 | 28.12 | 18.27 | 0.99737 |
0.021 | 1089.3 | 3.77 | 4.74 | 4.18 | 50.57 | 19.97 | 0.99621 | |
0.026 | 1089.9 | 5.79 | 2.15 | 4.61 | 37.69 | 20.56 | 0.99705 |
Fig. 6. (a) Raw data and fitting curve (cyan solid line) for the change in penetration depth with time as a function of time throughout the loading process, dh/dt vs. t, in uncharged and charged alloys. (b) Corresponding extracted serration bursts versus time after 20 s of loading in uncharged and charged alloys. (c) Taking uncharged samples as an example, indentation-size effect can be observed on curves of shear stress, τ, vs. penetration depth, h, (brown line) and indentation strain rate, $\dot{\varepsilon }$, vs. penetration depth, h, (dark green line). The inset is the partial enlarged view. (d) Variation in the maximum shear stress identified by the intersection of the two stages in each serration event in uncharged and charged alloys.
Fig. 7. (a) Cumulative probability distributions of τmax at serrations in uncharged and charged alloys; inset shows the probability distributions of corresponding, τmax. (b) The correlation between ln[ln(1-f)-1] and τmax for these uncharged and charged alloys; introducing Eq. (12) produced a good agreement with the data (solid black lines), and the inset shows the range of V* values for the uncharged and charged alloys.
Alloy | H content CH (wt.%) | Activation Volume V* (nm3) | STZ volume Ω (nm3) | STZ size (atom) | STZ activation energy W(kJ/mol) |
---|---|---|---|---|---|
Zr55Cu30Al10Ni5 | UC | 0.02824±0.0007 | 0.6162±0.021 | 41±2 | 36.8 ± 1.4 |
0.021 | 0.03183±0.0011 | 0.6949±0.024 | 46±2 | 40.8 ± 1.6 | |
0.026 | 0.04304±0.0016 | 0.9400±0.036 | 62±3 | 61.4 ± 2.4 |
Table 2 Correlation parameters for the internal flow units in the loading stage using the serration-flow statistic method.
Alloy | H content CH (wt.%) | Activation Volume V* (nm3) | STZ volume Ω (nm3) | STZ size (atom) | STZ activation energy W(kJ/mol) |
---|---|---|---|---|---|
Zr55Cu30Al10Ni5 | UC | 0.02824±0.0007 | 0.6162±0.021 | 41±2 | 36.8 ± 1.4 |
0.021 | 0.03183±0.0011 | 0.6949±0.024 | 46±2 | 40.8 ± 1.6 | |
0.026 | 0.04304±0.0016 | 0.9400±0.036 | 62±3 | 61.4 ± 2.4 |
Fig. 8. (a) Change in the stress and strain rate vs. creep time for the uncharged and charged BMGs. (b) Log-log correlation between the indentation stress and strain rate during creep for these uncharged and charged alloys. (c) The strain-rate sensitivity, m, estimated by linear fitting of the steady-state portion of the creep curves.
Alloy | H content CH (wt.%) | Strain rate sensitivity m | STZ volume Ω (nm3) | STZ size (atom) | STZ activation energy W(kJ/mol) |
---|---|---|---|---|---|
Zr55Cu30Al10Ni5 | UC | 0.0322±0.003 | 2.278±0.026 | 165±2 | 135.6 ± 1.6 |
0.021 | 0.0308±0.002 | 2.473±0.012 | 180±1 | 145.2 ± 0.7 | |
0.026 | 0.0265±0.004 | 3.362±0.023 | 245±1 | 183.7 ± 1,3 |
Table 3 Correlation parameters of internal flow units in the holding stage determined by the creep method.
Alloy | H content CH (wt.%) | Strain rate sensitivity m | STZ volume Ω (nm3) | STZ size (atom) | STZ activation energy W(kJ/mol) |
---|---|---|---|---|---|
Zr55Cu30Al10Ni5 | UC | 0.0322±0.003 | 2.278±0.026 | 165±2 | 135.6 ± 1.6 |
0.021 | 0.0308±0.002 | 2.473±0.012 | 180±1 | 145.2 ± 0.7 | |
0.026 | 0.0265±0.004 | 3.362±0.023 | 245±1 | 183.7 ± 1,3 |
[1] |
H.J. Lin, M. He, S.P. Pan, L. Gu, H.W. Li, H. Wang, L.Z. Ouyang, J.W. Liu, T.P. Ge, D.P. Wang, W.H. Wang, E. Akiba, M. Zhu, Acta Mater. 120 (2016) 68-74.
DOI URL |
[2] |
S.-i. Yamaura, M. Sakurai, M. Hasegawa, K. Wakoh, Y. Shimpo, M. Nishida, H. Kimura, E. Matsubara, A. Inoue, Acta Mater. 53 (13) (2005) 3703-3711.
DOI URL |
[3] |
M.D. Dolan, N.C. Dave, A.Y. Ilyushechkin, L.D. Morpeth, K.G. McLennan, J. Memb. Sci. 285 (1) (2006) 30-55.
DOI URL |
[4] |
F. Dong, M. He, Y. Zhang, L. Luo, Y. Su, B. Wang, H. Huang, Q. Xiang, X. Yuan, X. Zuo, B. Han, Y. Xu, J. Non Cryst. Solids 481 (2018) 170-175.
DOI URL |
[5] |
R. Kirchheim, F. Sommer, G. Schluckebier, Acta Metallurgica 30 (6) (1982) 1059-1068.
DOI URL |
[6] |
F. Dong, M. He, Y. Zhang, L. Luo, Y. Su, B. Wang, H. Huang, Q. Xiang, X. Yuan, X. Zuo, B. Han, Y. Xu, Int. J. Hydrogen Energy 42 (40) (2017) 25436-25445.
DOI URL |
[7] |
D. Granata, E. Fischer, J.F. Löffler, Acta Mater. 99 (2015) 415-421.
DOI URL |
[8] |
N. Eliaz, D. Eliezer, Adv. Perform. Mater. 6 (1) (1999) 5-31.
DOI URL |
[9] |
F. Dong, M. He, Y. Zhang, B. Wang, L. Luo, Y. Su, H. Yang, X. Yuan, Mater. Sci. Eng. 759 (2019) 105-111.
DOI URL |
[10] |
K.W. Park, Y. Shibutani, Int. J. Hydrogen Energy 36 (15) (2011) 9324-9334.
DOI URL |
[11] |
S. Jayalakshmi, K.B. Kim, E. Fleury, J. Alloys Compd. 417 (1) (2006) 195-202.
DOI URL |
[12] |
F.Y. Dong, Y.Q. Su, L.S. Luo, L. Wang, S.J. Wang, L.J. Guo, H.Z. Fu, Int. J. Hydrogen Energy 37 (19) (2012) 14697-14701.
DOI URL |
[13] | D. Suh, R.H. Dauskardt, Scr. Mater. 40 (3) (2000) 233-240. |
[14] |
S.T. Liu, Z. Wang, H.L. Peng, H.B. Yu, W.H. Wang, Scr. Mater. 67 (1) (2012) 9-12.
DOI URL |
[15] |
W.H. Wang, Y. Yang, T.G. Nieh, C.T. Liu, Intermetallics 67 (2015) 81-86.
DOI URL |
[16] |
J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci. 104 (2019) 250-329.
DOI |
[17] | W. Li, H. Bei, Y. Tong, W. Dmowski, Y.F. Gao, Structural heterogeneity induced plasticity in bulk metallic glasses: from well-relaxed fragile glass to metal-like behavior, 103 (17) (2013) 171910. |
[18] |
W. Li, Y. Gao, H. Bei, Sci. Rep. 5 (1) (2015) 14786.
DOI URL |
[19] | Z. Wang, P. Wen, L.S. Huo, H.Y. Bai, W.H. Wang, Appl. Phys. Lett. 101 (12) (2012). |
[20] |
F. Spaepen, Acta Metallurgica 25 (4) (1977) 407-415.
DOI URL |
[21] |
A.S. Argon, Acta Metallurgica 27 (1) (1979) 47-58.
DOI URL |
[22] | W.L. Johnson, K. Samwer, Phys. Rev. Lett. 95 (19) (2005) 195501. |
[23] |
C. Bennemann, C. Donati, J. Baschnagel, S.C. Glotzer, Nature 399 (6733) (1999) 246-249.
DOI URL |
[24] |
A. Furukawa, H. Tanaka, Nat. Mater. 8 (7) (2009) 601-609.
DOI PMID |
[25] | M. Zink, K. Samwer, W.L. Johnson, S.G. Mayr, Phys. Rev. B 73 (17) (2006). |
[26] |
D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Proc Natl. Acad. Sci. 105 (39) (2008) 14769.
DOI URL |
[27] |
Y. Zhao, I.-.C. Choi, M.-.Y. Seok, U. Ramamurty, J.-.Y. Suh, J.-ii. Jang, Scr. Mater. 93 (2014) 56-59.
DOI URL |
[28] |
Y.K. Zhao, I.C. Choi, M.Y. Seok, M.H. Kim, D.H. Kim, U. Ramamurty, J.Y. Suh, J.I. Jang, Acta Mater. 78 (2014) 213-221.
DOI URL |
[29] |
F. Dong, S. Lu, Y. Zhang, L. Luo, Y. Su, B. Wang, H. Huang, Q. Xiang, X. Yuan, X. Zuo, J. Alloys Compd. 695 (2017) 3183-3190.
DOI URL |
[30] |
W. Dandana, M.A. Yousfi, K. Hajlaoui, F. Gamaoun, A.R. Yavari, J. Non Cryst. Solids 456 (2017) 138-142.
DOI URL |
[31] |
G.M. Pharr, J.H. Strader, W.C. Oliver, J. Mater. Res. 24 (3) (2009) 653-666.
DOI URL |
[32] | G.Y. Zhou, J. Guo, J.Y. Zhao, Q. Tang, Z.N. Hu, Metals-Basel 10 (1) (2020). |
[33] |
J.Y. Sun, W. Wu, M.Z. Ling, B. Bhushan, J. Tong, RSC Adv. 6 (82) (2016) 79106-79113.
DOI URL |
[34] |
L. Liu, K.C. Chan, Mater. Lett. 59 (24-25) (2005) 3090-3094.
DOI URL |
[35] |
Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, Y.L. Wang, Prog. Mater. Sci. 90 (2017) 358-460.
DOI URL |
[36] |
W.H. Jiang, F. Jiang, F.X. Liu, Y.D. Wang, H.M. Dang, F.Q. Yang, H. Choo, P.K. Liaw, Mater. Sci. Tech.-Lond. 28 (2) (2012) 249-255.
DOI URL |
[37] |
L.P. Yu, S.Y. Chen, J.L. Ren, Y. Ren, F.Q. Yang, K.A. Dahmen, P.K. Liaw, J. Iron. Steel Res. Int. 24 (4) (2017) 390-396.
DOI URL |
[38] | R. Sarmah, G. Ananthakrishna, B.A. Sun, W.H. Wang, Acta Mater. 59 (11) (2011) 4 482-4 493. |
[39] | L. Cheng, Z.M. Jiao, S.G. Ma, J.W. Qiao, Z.H. Wang, J. Appl. Phys. 115 (8) (2014). |
[40] | B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, W.H. Wang, Phys. Rev. Lett. 105 (3) (2010) 035501. |
[41] |
Q.J. Zhou, J.Y. He, X.P. Hao, W.Y. Chu, L.J. Qiao, Mat. Sci. Eng. a-Struct. 437 (2) (2006) 356-359.
DOI URL |
[42] | S. Jayalakshmi, E. Fleury, D.J. Sordelet, J. Phys. 144(2009). |
[43] |
G.B. Shan, J.X. Li, Y.Z. Yang, L.J. Qiao, W.Y. Chu, Mater. Lett. 61 (8-9) (2007) 1625-1628.
DOI URL |
[44] | D. Chiang, J.C.M. Li, Polymer (Guildf) 35 (19) (1994) 4103-4109. |
[45] |
A. Castellero, B. Moser, D.I. Uhlenhaut, F.H.D. Torre, J.F. Löffler, Acta Mater. 56 (15) (2008) 3777-3785.
DOI URL |
[46] |
W.H. Li, K. Shin, C.G. Lee, B.C. Wei, T.H. Zhang, Y.Z. He, Mat. Sci. Eng. a-Struct. 478 (1-2) (2008) 371-375.
DOI URL |
[47] |
B.C. Wei, T.H. Zhang, W.H. Li, D.M. Xing, L.C. Zhang, Y.R. Wang, Mater. Trans. 46 (12) (2005) 2959-2962.
DOI URL |
[48] |
S. Yang, Y.W. Zhang, K.Y. Zeng, J. Appl. Phys. 95 (7) (2004) 3655-3666.
DOI URL |
[49] |
A.H.W. Ngan, B. Tang, J. Mater. Res. 17 (10) (2002) 2604-2610.
DOI URL |
[50] |
J.L. Wu, Y. Pan, J.H. Pi, Appl. Phys. a-Mater. 115 (1) (2014) 305-312.
DOI URL |
[51] |
X.Y. Wang, P. Gong, L. Deng, J.S. Jin, S.B. Wang, P. Zhou, J. Non Cryst. Solids 470 (2017) 27-37.
DOI URL |
[52] |
L.C. Zhang, B.C. Wei, D.M. Xing, T.H. Zhang, W.H. Li, Y. Liu, Intermetallics 15 (5-6) (2007) 791-795.
DOI URL |
[53] | K.M. Bernatz, I. Echeverria, S.L. Simon, D.J. Plazek, J. Non Cryst. Solids 307 (2002) 790-801. |
[54] | V. Ocelík, K. Csach, A. Kasardová, V.Z. Bengus, Mater. Sci. Engi. 226-228 (1997) 851-855. |
[55] |
A. Inoue, A. Takeuchi, Acta Mater. 59 (6) (2011) 2243-2267.
DOI URL |
[56] |
W.L. Johnson, MRS Bull. 24 (10) (1999) 42-56.
DOI URL |
[57] |
C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (12) (2007) 4067-4109.
DOI URL |
[58] |
B.A. Sun, S. Pauly, J. Tan, M. Stoica, W.H. Wang, U. Kühn, J. Eckert, Acta Mater. 60 (10) (2012) 4160-4171.
DOI URL |
[59] |
G. Wang, K.C. Chan, L. Xia, P. Yu, J. Shen, W.H. Wang, Acta Mater. 57 (20) (2009) 6146-6155.
DOI URL |
[60] |
D. Klaumunzer, R. Maass, J.F. Loffler, J. Mater. Res. 26 (12) (2011) 1453-1463.
DOI URL |
[61] |
I.-.C. Choi, Y. Zhao, Y.-.J. Kim, B.-.G. Yoo, J.-.Y. Suh, U. Ramamurty, J.-ii. Jang, Acta Mater. 60 (19) (2012) 6 862- 6 86 8.
DOI URL |
[62] | X.L. Bian, G. Wang, K.C. Chan, J.L. Ren, Y.L. Gao, Q.J. Zhai, Appl. Phys. Lett. 103 (10) (2013). |
[63] | M. Zhang, Y.J. Wang, L.H. Dai, J. Non Cryst. Solids 4 4 4 (2016) 23-30. |
[64] |
W. Peng, B.C. Wei, T.H. Zhang, Y. Liu, L. Li, Mater. Trans. 48 (7) (2007) 1759-1764.
DOI URL |
[65] |
C.A. Schuh, T.G. Nieh, Acta Mater. 51 (1) (2003) 87-99.
DOI URL |
[66] |
H. Li, A.H.W. Ngan, M.G. Wang, J. Mater. Res. 20 (11) (2005) 3072-3081.
DOI URL |
[67] |
G.K. Liao, Z.L. Long, M.S.Z. Zhao, M. Zhong, W. Liu, W. Chai, J. Non Cryst. Solids 460 (2017) 47-53.
DOI URL |
[68] |
C. Schuh, T.G. Nieh, J. Mater. Res. 19 (2004) 46-57.
DOI URL |
[69] |
H. Chen, Y.X. Song, T.H. Zhang, M. Wu, Y. Ma, J. Non Cryst. Solids 499 (2018) 257-263.
DOI URL |
[70] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (6) (1992) 1564-1583.
DOI URL |
[71] | Y.M. Lu, B.A. Sun, L.Z. Zhao, W.H. Wang, M.X. Pan, C.T. Liu, Y. Yang, Sci.. Rep. 6(2016). |
[72] |
C. Schuh, A. Lund, J. Mater. Res. 19 (2004) 2152-2158.
DOI URL |
[73] | D. Tonnies, K. Samwer, P.M. Derlet, C.A. Volkert, R. Maass, Appl. Phys. Lett. 106 (17) (2015). |
[74] |
H. Guo, C.B. Jiang, B.J. Yang, J.Q. Wang, J. Mater. Sci. Technol. 33 (11) (2017) 1272-1277.
DOI |
[75] |
J.D. Bernal, Nature 183 (4655) (1959) 141-147.
DOI URL |
[76] |
Y. Ma, J.H. Ye, G.J. Peng, D.H. Wen, T.H. Zhang, Mater. Sci. Eng. 627 (2015) 153-160.
DOI URL |
[77] |
P. Huang, F. Wang, M. Xu, K.W. Xu, T.J. Lu, Acta Mater. 58 (15) (2010) 5196-5205.
DOI URL |
[78] | I.C. Choi, B.G. Yoo, Y.J. Kim, J.I. Jang, J. Mater. Res. 27 (1) (2012) 2-10. |
[79] |
F. Wang, J.M. Li, P. Huang, W.L. Wang, T.J. Lu, K.W. Xu, Intermetallics 38 (2013) 156-160.
DOI URL |
[80] | M. Heggen, F. Spaepen, M. Feuerbacher, J. Appl. Phys. 97 (3) (2005). |
[81] |
L.S. Luo, B.B. Wang, F.Y. Dong, Y.Q. Su, E.Y. Guo, Y.J. Xu, M.Y. Wang, L. Wang, J.X. Yu, R.O. Ritchie, J.J. Guo, H.Z. Fu, Acta Mater. 171 (2019) 216-230.
DOI |
[82] |
Y.Q. Su, F.Y. Dong, L.S. Luo, J.J. Guo, B.S. Han, Z.X. Li, B.Y. Wang, H.Z. Fu, J. Non Cryst. Solids 358 (18-19) (2012) 2606-2611.
DOI URL |
[83] |
J.A. Rodriguez, D.W. Goodman, Science 257 (5072) (1992) 897.
PMID |
[84] |
R.A. Oriani, P.H. Josephic, Scripta Metallurgica 6 (8) (1972) 6 81-688.
DOI URL |
[85] | A.R. Troiano, Metal., Microstruct. Anal. 5 (6) (2016) 557-569. |
[86] |
D. Setoyama, J. Matsunaga, H. Muta, M. Uno, S. Yamanaka, J. Alloys Compd. 385 (1) (2004) 156-159.
DOI URL |
[1] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
[2] | Dong Wang, Xu Lu, Meichao Lin, Di Wan, Zhiming Li, Jianying He, Roy Johnsen. Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation [J]. J. Mater. Sci. Technol., 2022, 98(0): 118-122. |
[3] | Jianping Lai, Wen Hu, Amit Datye, Jingbei Liu, Jan Schroers, Udo D. Schwarz, Jiaxin Yu. Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach [J]. J. Mater. Sci. Technol., 2021, 84(0): 97-104. |
[4] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[5] | Zhonghuai Wu, Liangchi Zhang. Mechanical properties and deformation mechanisms of surface-modified 6H-silicon carbide [J]. J. Mater. Sci. Technol., 2021, 90(0): 58-65. |
[6] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[7] | Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65(0): 108-117. |
[8] | Chaoyang Wang, Shengli Zhu, Yanqin Liang, Zhenduo Cui, Shuilin Wu, Chunling Qin, Shuiyuan Luo, Akihisa Inoue. Understanding the macroscopical flexibility/fragility of nanoporous Ag: Depending on network connectivity and micro-defects [J]. J. Mater. Sci. Technol., 2020, 53(0): 91-101. |
[9] | Haoqing Li, Ming Wang, Dianjun Lou, Weilong Xia, Xiaoying Fang. Microstructural features of biomedical cobalt-chromium-molybdenum (CoCrMo) alloy from powder bed fusion to aging heat treatment [J]. J. Mater. Sci. Technol., 2020, 45(0): 146-156. |
[10] | Wenyin Xue, Jinhua Zhou, Yongfeng Shen, Weina Zhang, Zhenyu Liu. Micromechanical behavior of a fine-grained China low activation martensitic (CLAM) steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1869-1876. |
[11] | T. Sapanathan, N. Jimenez-Mena, I. Sabirov, M.A. Monclús, J.M. Molina-Aldareguía, P. Xia, L. Zhao, A. Simar. A new physical simulation tool to predict the interface of dissimilar aluminum to steel welds performed by friction melt bonding [J]. J. Mater. Sci. Technol., 2019, 35(9): 2048-2057. |
[12] | Shao-Ping Wang, Jian Xu. Incipient plasticity and activation volume of dislocation nucleation for TiZrNbTaMo high-entropy alloys characterized by nanoindentation [J]. J. Mater. Sci. Technol., 2019, 35(5): 812-816. |
[13] | Hui Guo, Suode Zhang, Wenhai Sun, Jianqiang Wang. Differences in dry sliding wear behavior between HVAF-sprayed amorphous steel and crystalline stainless steel coatings [J]. J. Mater. Sci. Technol., 2019, 35(5): 865-874. |
[14] | L.R. Zeng, H.L. Chen, X. Li, L.M. Lei, G.P. Zhang. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34(5): 782-787. |
[15] | Guo Hui, Jiang Chuanbin, Yang Baijun, Wang Jianqiang. Deformation behavior of Al-rich metallic glasses under nanoindentation [J]. J. Mater. Sci. Technol., 2017, 33(11): 1272-1277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||