J. Mater. Sci. Technol. ›› 2022, Vol. 117: 59-64.DOI: 10.1016/j.jmst.2021.12.009
• Research Article • Previous Articles Next Articles
Tianzi Yanga, Tianyu Maa,*(), Feng Liub, Xiaobing Rena,c,*(
)
Received:
2021-08-07
Revised:
2021-11-27
Accepted:
2021-12-08
Published:
2022-02-02
Online:
2022-08-01
Contact:
Tianyu Ma,Xiaobing Ren
About author:
ren.xiaobing@xjtu.edu.cn (X. Ren).Tianzi Yang, Tianyu Ma, Feng Liu, Xiaobing Ren. Formation mechanism of partial stacking faults by incomplete mixed-mode phase transformation: A case study of Fe-Ga alloys[J]. J. Mater. Sci. Technol., 2022, 117: 59-64.
Fig. 1. TEM characterization of 8h-aged Fe73Ga27 along [110]FCC ZA. (a) Bright-field image, (b, c) SAED patterns of the homogeneous and heterogeneous regions in (a), (d)-(f) dark-field images taken using the spots marked by I, II, and III in (c), respectively. (c, d) Were firstly shown in Ref. [41].
Fig. 2. (a) HRTEM image with partial stacking faults at the twin boundary (TB) of L12 phase. (b) HRTEM image of BCC lattice of the solution-treated sample. Derived disorder model (c) and order model (d) of forming partial stacking faults on the projections of [010]BCC // [110]FCT/FCC.
Fig. 3. Unit cell, projection and simulated electron diffraction pattern for the (a) rhombohedral lattice containing two disordered layers, (b) rhombohedral lattice containing two ordered layers, and (c) cubic-closely packed (CCP) L12 Fe3Ga.
Fig. 4. TEM characterization of the 8h-aged Fe73Ga27 sample along [112]FCC ZA. (a) Bright-field image, (b) SAED pattern and (c) intensity profile along the white arrow in (b). Red arrows indicate the reflections of disordered FCT phase.
Fig. 5. (a) HRTEM image of the region containing stacking faults and local R phase in the 8 h -aged sample. (b) FFT pattern of the white square in (a).
Fig. 6. TEM characterization of the Fe73Ga27 sample aged for 720 h at 530 °C. (a, b) SAED patterns taken from the regions circled by dashed blue and black lines in (c), respectively. (c) STEM image of the region containing transformed L12 variants and untransformed BCC matrix. Elemental mapping images (d) and elemental distributions (e) along the white arrow in (c).
[1] |
A.R. Oganov, R. Marto ˇnák, A. Laio, M. Parrinello, Nature 438 (2005) 1142-1144.
DOI URL |
[2] |
E. Vekris, V. Kitaev, D.D. Perovic, J.S. Aitchison, G.A. Ozin, Adv. Mater. 20 (2008) 1110-1116.
DOI URL |
[3] |
H.V. Swygenhoven, P.M. Derlet, A.G. FRØSETH, Nat. Mater. 3 (2004) 399-403.
PMID |
[4] |
K.Y. Yu, D. Bufford, C. Sun, Y. Liu, H. Wang, M.A. Kirk, M. Li, X. Zhang, Nat. Commun. 4 (2013) 1377.
DOI PMID |
[5] |
K. Schouteden, B. Amin-Ahmadi, Z. Li, D. Muzychenko, D. Schryvers, C.V. Hae- sendonck, Nat. Commun. 7 (2016) 14001.
DOI PMID |
[6] |
B.P. Uberuaga, R.G. Hoagland, A.F. Voter, S.M. Valone, Phys. Rev. Lett. 99 (2007) 135501.
DOI URL |
[7] |
W.Z. Han, G.M. Cheng, S.X. Li, S.D. Wu, Z.F. Zhang, Phys. Rev. Lett. 101 (2008) 115505.
DOI URL |
[8] |
K.A. Ofei, L. Zhao, J. Sietsma, J. Mater. Sci. Technol. 29 (2013) 161-167.
DOI |
[9] |
G. Yang, S.Y. Ma, K. Du, D.S. Xu, S. Chen, Y. Qi, H.Q. Ye, J. Mater. Sci. Technol 35 (2019) 402-408.
DOI URL |
[10] |
T. Cai, K.Q. Li, Z.J. Zhang, P. Zhang, R. Liu, J.B. Yang, Z.F. Zhang, J. Mater. Sci. Technol. 53 (2020) 61-65.
DOI |
[11] |
H.T. Liu, X.F. Zhu, Y.Z. Sun, W.K. Xie, Appl. Surf. Sci. 422 (2017) 413-419.
DOI URL |
[12] |
R.H. Qiao, J.M. Gou, T.Z. Yang, Y.Q. Zhang, F. Liu, S.S. Hu, T.Y. Ma, J. Mater. Sci. Technol. 84 (2021) 173-181.
DOI URL |
[13] |
H.L. Shi, B. Dong, W.Z. Wang, Nanoscale 4 (2012) 6389-6392.
DOI URL |
[14] |
S. Nag, A. Devaraj, R. Srinivasan, R.E.A. Williams, N. Gupta, G.B. Viswanathan, J.S. Tiley, S. Banerjee, S.G. Srinivasan, H.L. Fraser, R. Banerjee, Phys. Rev. Lett. 106 (2011) 245701.
DOI URL |
[15] |
S.C. Wang, M.J. Starink, Int. Mater. Rev. 50 (2005) 193-2151804727.
DOI URL |
[16] |
W.J. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z.M. Li, Adv. Mater. 30 (2018) 1804727.
DOI URL |
[17] |
S.G. Song, G.T. Gray, Philos. Mag. A 71 (1994) 263-274.
DOI URL |
[18] |
X. Song, T.Y. Ma, X.L. Zhou, F. Ye, T. Yuan, J.D. Wang, M. Yue, F. Liu, X.B. Ren, Acta Mater. 202 (2021) 290-301.
DOI URL |
[19] |
J.Y. Huang, Y.K. Wu, H.Q. Ye, Micro. Res. Tech. 40 (1998) 101-121.
DOI URL |
[20] |
W.C. Cheng, H.Y. Lin, Mater. Sci. Eng. A 323 (2002) 462-466.
DOI URL |
[21] | Z. Nishiyama, Martensitic Transformation, Academic Press, London, 1978. |
[22] | K. Otsuka, C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1998. |
[23] |
J. Xia, Y. Noguchi, X. Xu, T. Odaira, Y. Kimura, M. Nagasako, T. Omori, R. Kainuma, Science 369 (2020) 855-858.
DOI PMID |
[24] |
M.S. Rashid, Science 208 (1980) 862-869.
PMID |
[25] |
J. Morris Jr, Nat. Mater. 16 (2017) 787-789.
DOI PMID |
[26] |
D. Fukui, N. Nakada, S. Onaka, Acta Mater. 196 (2020) 660-668.
DOI URL |
[27] |
S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51 (2003) 1789-1799.
DOI URL |
[28] |
S. Guruswamy, N. Srisukhumbowornchai, A.E. Clark, J.B. Restorff, M. Wun-Fogle, Scr. Mater. 43 (2000) 239-244.
DOI URL |
[29] |
Y.J. Chen, Z.H. Fu, Y.Y. Wu, Y.C. Xu, Y. Xiao, J.M. Wang, R.F. Zhang, C.B. Jiang, Acta Mater. 213 (2021) 116975.
DOI URL |
[30] |
J.H. Li, X.X. Gao, J. Zhu, J. Li, M.C. Zhang, J. Alloy. Compd. 484 (2009) 203-206.
DOI URL |
[31] | F. Yang, C.M. Leung, S.W. Or, W. Liu, X.K. Lv, Z.D. Zhang, J. Alloy. Compd. 509 (2011) 4 954-4957. |
[32] |
X.K. Lv, S.W. Or, W. Liu, X.H. Liu, Z.D. Zhang, J. Alloy. Compd. 476 (2009) 271-275.
DOI URL |
[33] |
Y.J. Zhang, W. Zhang, X.F. Yu, C. Yu, Z.Y. Liu, G.H. Wu, F.B. Meng, Mater. Sci. Eng. B 260 (2020) 114654.
DOI URL |
[34] |
J.M. Gou, X.L. Liu, K.Y. Wu, Y. Wang, S.S. Hu, H. Zhao, A.D. Xiao, T.Y. Ma, M. Yan, Appl. Phys. Lett. 109 (2016) 082404.
DOI URL |
[35] |
V.V. Palacheva, A. Emdadi, F. Emeis, I.A. Bobrikov, A.M. Balagurov, S.V. Divinski, G. Wilde, I.S. Golovin, Acta Mater. 130 (2017) 229-239.
DOI URL |
[36] |
T.Y. Ma, J.M. Gou, S.S. Hu, X.L. Liu, C. Wu, S. Ren, H. Zhao, A.D. Xiao, C.B. Jiang, X.B. Ren, M. Yan, Nat. Commun. 8 (2017) 13937.
DOI URL |
[37] |
M.M. Li, J.H. Li, X.Q. Bao, J.Q. Wang, Y.L. Zhao, H. Jiang, X.X. Gao, J. Alloy. Compd. 701 (2017) 768-773.
DOI URL |
[38] | J.M. Gou, X.L. Liu, C.S. Zhang, G.A. Sun, Y.N. Shi, J. Wang, H.X. Chen, T.Y. Ma, X.B. Ren, Phys. Rev. Mater. 2 (2018) 114406. |
[39] |
J.M. Gou, T.Z. Yang, R.H. Qiao, Y. Liu, T.Y. Ma, Scr. Mater. 185 (2020) 129-133.
DOI URL |
[40] |
O. Ikeda, R. Kainuma, I. Ohnuma, K. Fukamichi, K. Ishida, J. Alloy. Compd. 347 (2002) 198-205.
DOI URL |
[41] |
J.M. Gou, T.Z. Yang, X.L. Liu, T.Y. Ma, J. Alloy. Compd. 836 (2020) 155282.
DOI URL |
[42] |
Q. Xing, Y. Du, R.J. McQueeney, T.A. Lograsso, Acta Mater. 56 (2008) 4536-4546.
DOI URL |
[43] |
R.D. Heidenreich, W. Shockley, J. Appl. Phys., 18 (1947) 1029-1031.
DOI URL |
[44] | Y.N. Yu, Principles of Metallography, Metallurgical Industry Press, Beijing, 2000. |
[45] |
A.G. Khachaturyan, D. Viehland, Metall. Mater. Trans. A 38 (2007) 2308-2316.
DOI URL |
[46] |
G.R. Love, Acta Metall. 12 (1964) 731-737.
DOI URL |
[47] |
R.W. Xie, S. Lu, W. Li, Y.Z. Tian, L. Vitos, Acta Mater. 191 (2020) 43-50.
DOI URL |
[48] |
I.J. Beyerlein, X.H. Zhang, A. Misra, Annu. Rev. Mater. Res. 44 (2014) 329-363.
DOI URL |
[49] |
L. Bracke, L. Kestens, J. Penning, Scr. Mater. 57 (2007) 385-388.
DOI URL |
[50] | D.H. Ping, Acta Metall. Sin. (English Letters) 28 (2015) 663-670. |
[51] |
W.N. Zhang, Z.Y. Liu, Z.B. Zhang, G.D. Wang, Mater. Lett. 91 (2013) 158-160.
DOI URL |
[52] | I.G. Kabanova, V.V. Sagaradze, N.V. Kataeva, V.E. Danil’chenko, Phys. Met. Met- all. 112 (2011) 381-388. |
[53] |
I.G. Kabanova, V.V. Sagaradze, N.V. Kataeva, Phys. Met. Metall. 112 (2011) 267-276.
DOI URL |
[54] |
Y.C. Lin, C.F. Lin, J. Appl. Phys. 117 (2015) 17A920.
DOI URL |
[1] | Junwei Che, Xiangyang Liu, Xuezhi Wang, Quan Zhang, Erhu Zhang, Gongying Liang, Shengli Zhang. Ultralow oxygen ion diffusivity in pyrochlore-type La2(Zr0.7Ce0.3)2O7 [J]. J. Mater. Sci. Technol., 2022, 102(0): 174-185. |
[2] | Seyed Amir Arsalan Shams, Jae Wung Bae, Jae Nam Kim, Hyoung Seop Kim, Taekyung Lee, Chong Soo Lee. Origin of superior low-cycle fatigue resistance of an interstitial metastable high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 115(0): 115-128. |
[3] | Junjie Wang, Zongde Kou, Shu Fu, Shangshu Wu, Sinan Liu, Mengyang Yan, Zhiqiang Ren, Di Wang, Zesheng You, Si Lan, Horst Hahn, Xun-Li Wang, Tao Feng. Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition [J]. J. Mater. Sci. Technol., 2022, 115(0): 29-39. |
[4] | Zhongwu Liu, Jiayi He, Qing Zhou, Youlin Huang, Qingzheng Jiang. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets [J]. J. Mater. Sci. Technol., 2022, 98(0): 51-61. |
[5] | Huijun Li, Xiaomin Wang, Zhenxin Zhao, Rajesh Pathak, Siyue Hao, Xiaoming Qiu, Qiquan Qiao. Microstructure controlled synthesis of Ni, N-codoped CoP/carbon fiber hybrids with improving reaction kinetics for superior sodium storage [J]. J. Mater. Sci. Technol., 2022, 99(0): 184-192. |
[6] | Yan Liu, Jinshan Li, Bin Tang, William Yi Wang, Minjie Lai, Lei Zhu, Hongchao Kou. Formation mechanism of γ twins in β-solidified γ-TiAl alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 164-171. |
[7] | Chang Gao, Yu Zhao, Weili Li, Yulong Qiao, Zhao Wang, Lu Jing, Jie Sheng, Wei-Dong Fei. Large linear electrostrain of acceptor-donor Co-doped ZnO films [J]. J. Mater. Sci. Technol., 2022, 109(0): 12-19. |
[8] | C.Z. Fang, H.C. Basoalto, M.J. Anderson, H.Y. Li, S.J. Williams, P. Bowen. A numerical study on the influence of grain boundary oxides on dwell fatigue crack growth of a nickel-based superalloy✩ [J]. J. Mater. Sci. Technol., 2022, 104(0): 224-235. |
[9] | Yuan-Yuan Tan, Zhong-Jun Chen, Ming-Yao Su, Gan Ding, Min-Qiang Jiang, Zhou-Can Xie, Yu Gong, Tao Wu, Zhong-Hua Wu, Hai-Ying Wang, Lan-Hong Dai. Lattice distortion and magnetic property of high entropy alloys at low temperatures [J]. J. Mater. Sci. Technol., 2022, 104(0): 236-243. |
[10] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[11] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[12] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[13] | Tong Yang, Yi Kong, Jiangbo Lu, Zhenjun Zhang, Mingjun Yang, Ning Yan, Kai Li, Yong Du. Self-accommodated defect structures modifying the growth of Laves phase [J]. J. Mater. Sci. Technol., 2021, 62(0): 203-213. |
[14] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[15] | Minglu Li, Chaozhu Shu, Anjun Hu, Yu Yan, Miao He, Jianping Long. Active site synergy of the mixed-phase cobalt diselenides with slight lattice distortion for highly reversible and stable lithium oxygen batteries [J]. J. Mater. Sci. Technol., 2021, 92(0): 159-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||