J. Mater. Sci. Technol. ›› 2022, Vol. 117: 133-145.DOI: 10.1016/j.jmst.2021.11.049
• Research Article • Previous Articles Next Articles
Lin Hea, Shiwei Wub, Anping Donga,*(), Haibin Tangc, Dafan Dua, Guoliang Zhua, Baode Suna, Wentao Yanb,*(
)
Received:
2021-06-07
Revised:
2021-11-19
Accepted:
2021-11-23
Published:
2022-02-16
Online:
2022-08-01
Contact:
Anping Dong,Wentao Yan
About author:
mpeyanw@nus.edu.sg (W. Yan).Lin He, Shiwei Wu, Anping Dong, Haibin Tang, Dafan Du, Guoliang Zhu, Baode Sun, Wentao Yan. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility[J]. J. Mater. Sci. Technol., 2022, 117: 133-145.
Al | Co | Cr | Fe | Ni |
---|---|---|---|---|
16.393 | 16.393 | 16.393 | 16.393 | 34.428 |
Table 1. Nominal compositions (at.%) of the raw powder.
Al | Co | Cr | Fe | Ni |
---|---|---|---|---|
16.393 | 16.393 | 16.393 | 16.393 | 34.428 |
Samples | Power (W) | Scanning speed (mm/s) | Hatch space (μm) | Layer thickness(μm) |
---|---|---|---|---|
as-SLM | 243 | 1250 | 60 | 50 |
as-cast | Vacuum arc melting |
Table 2. Processing parameters for the tensile specimens.
Samples | Power (W) | Scanning speed (mm/s) | Hatch space (μm) | Layer thickness(μm) |
---|---|---|---|---|
as-SLM | 243 | 1250 | 60 | 50 |
as-cast | Vacuum arc melting |
Fig. 4. XRD patterns of the raw powder, as-cast and as-SLM samples. (a) Global graph, (b) the magnified view of the part marked in the blue rectangle in (a).
Phase | Al | Co | Cr | Fe | Ni |
---|---|---|---|---|---|
FCC-SLM | 14.669 ± 0.035 | 17.348 ± 0.221 | 17.365 ± 0.117 | 16.809 ± 0.091 | 34.811 ± 0.022 |
FCC-cast | 10.956 ± 0.146 | 17.346 ± 0.261 | 20.893 ± 0.426 | 18.615 ± 0.213 | 32.191 ± 0.072 |
BCC-cast | 25.881 ± 0.738 | 12.731 ± 0.106 | 10.228 ± 1.188 | 10.649 ± 0.234 | 40.511 ± 0.519 |
Table 3. Compositions of FCC and BCC measured by EPMA (at.%).
Phase | Al | Co | Cr | Fe | Ni |
---|---|---|---|---|---|
FCC-SLM | 14.669 ± 0.035 | 17.348 ± 0.221 | 17.365 ± 0.117 | 16.809 ± 0.091 | 34.811 ± 0.022 |
FCC-cast | 10.956 ± 0.146 | 17.346 ± 0.261 | 20.893 ± 0.426 | 18.615 ± 0.213 | 32.191 ± 0.072 |
BCC-cast | 25.881 ± 0.738 | 12.731 ± 0.106 | 10.228 ± 1.188 | 10.649 ± 0.234 | 40.511 ± 0.519 |
Fig. 6. Microstructure of the as-SLM sample in the XY plane. (a) SEM image, the magnified view of (b) the red circle and (c) the green circle areas in (a), (d) elemental distribution along the yellow line in (b).
Fig. 9. SEM images of the growth behavior of the columnar cells during the SLM process: (a) low misorientation, (b) medium misorientation, (c) high misorientation, (d) magnified view of the pink circle area in (c).
Fig. 10. (a) TEM bright-field (BF) graph of the as-cast sample. (b, c) SADP patterns of the FCC and BCC networks in (a), respectively. (d, e) TEM DF graphs of the FCC and BCC networks, respectively.
Fig. 11. (a) TEM BF graph of the as-SLM sample. (b, c) SAED patterns of the FCC and BCC phases in (a), respectively. (d) TEM DF graph of the FCC phase.
Fig. 13. (a) True stress-strain curves of the as-cast and as-SLM samples. (b) Yield and ultimate strengths of the as-SLM sample in comparison with those of the previously reported AlCoCrFeNi2.1 EHEAs manufactured via casting and directional solidification [[36], [37], [38], [39], [40], [41], [42],[56],[58], [59], [60]].
Sample | Yield strength (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|
As-cast | 492.3 ± 17.3 | 1221.3 ± 23.1 | 15.2 ± 0.1 |
As-SLM | 982.1 ± 35.2 | 1322.8 ± 54.9 | 12.3 ± 0.5 |
Table 4. Mechanical properties of as-cast and as-SLM EHEAs.
Sample | Yield strength (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|
As-cast | 492.3 ± 17.3 | 1221.3 ± 23.1 | 15.2 ± 0.1 |
As-SLM | 982.1 ± 35.2 | 1322.8 ± 54.9 | 12.3 ± 0.5 |
BCC-cast | FCC-cast | As-SLM |
---|---|---|
150.89 ± 3.171 | 172.56 ± 3.603 | 181.67 ± 2.705 |
Table 5. Elastic moduli of phases at the as-cast and as-SLM states (GPa).
BCC-cast | FCC-cast | As-SLM |
---|---|---|
150.89 ± 3.171 | 172.56 ± 3.603 | 181.67 ± 2.705 |
Empty Cell | Dislocation density (m-2) | Grain size (μm) | σD (MPa) | σG (MPa) |
---|---|---|---|---|
As-cast | 1.079 × 1012 | 17.12 | 12.7 | 89.6 |
As-SLM | 9.251 × 1014 | 7.37 | 373.1 | 136.7 |
Table 6. Calculation results for the as-cast and as-SLM samples.
Empty Cell | Dislocation density (m-2) | Grain size (μm) | σD (MPa) | σG (MPa) |
---|---|---|---|---|
As-cast | 1.079 × 1012 | 17.12 | 12.7 | 89.6 |
As-SLM | 9.251 × 1014 | 7.37 | 373.1 | 136.7 |
Fig. 17. Dislocation distribution in the as-SLM sample after fracture: (a) TEM BF graph, (b) corresponding TEM DF graph, (c) stacking faults in the FCC cells.
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 (2014) 107-123.
DOI URL |
[3] |
B. Yin, F. Maresca, W.A. Curtin, Acta Mater. 188 (2020) 486-491.
DOI URL |
[4] |
J. D ˛abrowa, G. Cieslak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, M. Danielewski, Intermetallics 84 (2017) 52-61.
DOI URL |
[5] |
J. Lu, Y. Chen, H. Zhang, L. Li, L. Fu, X. Zhao, F. Guo, P. Xiao, Corros. Sci. 170 (2020) 108691.
DOI URL |
[6] |
M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scr. Mater. 72-73 (2014) 5-8.
DOI URL |
[7] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[8] |
Y. Liao, I. Baker, Mater. Charact. 59 (2008) 1546-1549.
DOI URL |
[9] |
X. Hu, D. Chen, J. Mater. Eng. Perform. 27 (2018) 3566-3573.
DOI URL |
[10] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
[11] |
M. Xia, D. Gu, G. Yu, D. Dai, H. Chen, Q. Shi, Sci. Bull. 61 (2016) 1013-1022.
DOI URL |
[12] |
L. Wang, Y. Zhang, W. Yan, Phys. Rev. Appl. 14 (2020) 064039.
DOI URL |
[13] |
M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones, M.S. Dargusch, Acta Mater. 168 (2019) 261-274.
DOI |
[14] | N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. 1-4 (2014) 77-86. |
[15] | I.T. Ho, T.H. Hsu, Y.J. Chang, C.W. Li, K.C. Chang, S. Tin, K. Kakehi, A.C. Yeh, Addit. Manuf. 35 (2020) 101328. |
[16] |
N. Li, J. Zhang, W. Xing, D. Ouyang, L. Liu, Mater. Des. 143 (2018) 285-296.
DOI URL |
[17] | R.D. Li, T.C. Yuan, Q.S. Wei, L. Wang, Y.S. Shi, Lasers Eng. 25 (2013) 23-38. |
[18] |
R. Zhou, Y. Liu, B. Liu, J. Li, Q. Fang, Intermetallics 106 (2019) 20-25.
DOI |
[19] |
R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, J. Alloy. Compd. 746 (2018) 125-134.
DOI URL |
[20] |
Y. Chew, G.J. Bi, Z.G. Zhu, F.L. Ng, F. Weng, S.B. Liu, S.M.L. Nai, B.Y. Lee, Mater. Sci. Eng. A 744 (2019) 137-144.
DOI URL |
[21] |
P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Mater. Sci. Eng. A 739 (2019) 86-89.
DOI URL |
[22] | R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X. Liang, P.K. Liaw, Inter- metallics 94 (2018) 165-171. |
[23] |
D. Lin, L. Xu, Y. Han, Y. Zhang, H. Jing, L. Zhao, F. Minami, Intermetallics 127 (2020) 106963.
DOI URL |
[24] |
J. He, Q. Wang, H. Zhang, L. Dai, T. Mukai, Y. Wu, X. Liu, H. Wang, T.G. Nieh, Z. Lu, Sci. Bull. 63 (2018) 362-368.
DOI URL |
[25] |
D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, J. Alloy. Compd. 784 (2019) 195-203.
DOI |
[26] |
Z. Sun, X.P. Tan, M. Descoins, D. Mangelinck, S.B. Tor, C.S. Lim, Scr. Mater. 168 (2019) 129-133.
DOI URL |
[27] |
S. Luo, P. Gao, H. Yu, J. Yang, Z. Wang, X. Zeng, J. Alloy. Compd. 771 (2019) 387-397.
DOI URL |
[28] |
H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, Mater. Sci. Eng. A 656 (2016) 39-46.
DOI URL |
[29] | P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, L. Huang, Inter- metallics 104 (2019) 24-32. |
[30] | S. Luo, C. Zhao, Y. Su, Q. Liu, Z. Wang, Addit. Manuf. 31 (2020) 100925. |
[31] | C. Galy, E. Le Guen, E. Lacoste, C. Arvieu, Addit. Manuf. 22 (2018) 165-175. |
[32] | R. Rashid, S.H. Masood, D. Ruan, S. Palanisamy, R.A. Rahman Rashid, J. Elam-basseril, M. Brandt, Addit. Manuf. 22 (2018) 426-439. |
[33] |
P. Wei, Z. Wei, Z. Chen, J. Du, Y. He, J. Li, Y. Zhou, Appl. Surf. Sci. 408 (2017) 38-50.
DOI URL |
[34] | J. Hatch, Aluminum: Properties and Physical Metallurgy, American Society for Metals, Ohio, 1996. |
[35] |
Z. Ding, Q. He, Y. Yang, Sci. China Technol. Sci. 61 (2017) 159-167.
DOI URL |
[36] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Res. Lett. 4 (2016) 174-179.
DOI URL |
[37] |
X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, Y. Zhao, Acta Mater. 141 (2017) 59-66.
DOI URL |
[38] |
T. Xiong, S. Zheng, J. Pang, X. Ma, Scr. Mater. 186 (2020) 336-340.
DOI URL |
[39] |
T. Bhattacharjee, R. Zheng, Y. Chong, S. Sheikh, S. Guo, I.T. Clark, T. Okawa, I.S. Wani, P.P. Bhattacharjee, A. Shibata, N. Tsuji, Mater. Chem. Phys. 210 (2018) 207-212.
DOI URL |
[40] | T. Bhattacharjee, I.S. Wani, S. Sheikh, I.T. Clark, T. Okawa, S. Guo, P.P. Bhat-tacharjee, N. Tsuji, Sci.Rep. 8(2018)3276. |
[41] |
J. Wang, Z. Long, P. Jiang, Y. Fautrelle, X. Li, Metall. Mater. Trans. A 51 (2020) 3504-3517.
DOI URL |
[42] |
T. Wang, M. Komarasamy, S. Shukla, R.S. Mishra, J. Alloy. Compd. 766 (2018) 312-317.
DOI URL |
[43] |
S.R. Reddy, U. Sunkari, A. Lozinko, S. Guo, P.P. Bhattacharjee, J. Mater. Res. 34 (2019) 687-699.
DOI URL |
[44] |
M. Ni, C. Chen, X. Wang, P. Wang, R. Li, X. Zhang, K. Zhou, Mater. Sci. Eng. A 701 (2017) 344-351.
DOI URL |
[45] |
H. Wu, D. Zhang, B. Yang, C. Chen, Y. Li, K. Zhou, L. Jiang, R. Liu, J. Mater. Sci. Technol. 36 (2020) 7-17.
DOI URL |
[46] |
M. Yang, L. Wang, W. Yan, NPJ Comput. Mater. 7 (2021) 56.
DOI URL |
[47] | J.L. Walter, H.E. Cline, Metall. Trans. 1 (1970) 1221-1229. |
[48] |
R. Trivedi, N. Wang, Acta Mater. 60 (2012) 3140-3152.
DOI URL |
[49] |
H. Helmer, A. Bauereiß, R.F. Singer, C. Körner, Mater. Sci. Eng. A 668 (2016) 180-187.
DOI URL |
[50] |
J.M. Sánchez-Amaya, T. Delgado, L. González-Rovira, F.J. Botana, Appl. Surf. Sci. 255 (2009) 9512-9521.
DOI URL |
[51] |
Z. Sun, X. Tan, S.B. Tor, W.Y. Yeong, Mater. Des. 104 (2016) 197-204.
DOI URL |
[52] |
Y.K. Kim, M.C. Kim, K.A. Lee, J. Mater. Sci. Technol. 97 (2022) 10-19.
DOI URL |
[53] |
A. Aversa, M. Lorusso, G. Cattano, D. Manfredi, F. Calignano, E.P. Ambrosio, S. Biamino, P. Fino, M. Lombardi, M. Pavese, J. Alloy. Compd. 695 (2017) 1470-1478.
DOI URL |
[54] |
Y. Su, S. Luo, Z. Wang, J. Alloy. Compd. 842 (2020) 155823.
DOI URL |
[55] |
N. Wang, S. Mokadem, M. Rappaz, W. Kurz, Acta Mater. 52 (2004) 3173-3182.
DOI URL |
[56] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Sci. Eng. A 675 (2016) 99-109.
DOI URL |
[57] |
P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong, P.K. Liaw, Nat. Commun. 10 (2019) 489.
DOI URL |
[58] | L. Wang, C. Yao, J. Shen, Y. Zhang, T. Wang, Y. Ge, L. Gao, G. Zhang, Inter- metallics 118 (2020) 106681. |
[59] |
Y. Zhang, J. Li, X. Wang, Y. Lu, Y. Zhou, X. Sun, J. Mater. Sci. Technol. 35 (2019) 902-906.
DOI |
[60] |
H. Zheng, R. Chen, G. Qin, X. Li, Y. Su, H. Ding, J. Guo, H. Fu, Intermetallics 113 (2019) 106569.
DOI URL |
[61] |
R.J. Vikram, B.S. Murty, D. Fabijanic, S. Suwas, J. Alloy. Compd. 827 (2020) 154034.
DOI URL |
[62] |
W. Muhammad, A.P. Brahme, O. Ibragimova, J. Kang, K. Inal, Int. J. Plast. 136 (2021) 102867.
DOI URL |
[63] |
B. Wang, M. Sun, B. Li, L. Zhang, B. Lu, Materials 13 (2020) 5687 (Basel).
DOI URL |
[64] |
A. Charmi, R. Falkenberg, L. Ávila, G. Mohr, K. Sommer, A. Ulbricht, M. Spren-gel, R. Saliwan Neumann, B. Skrotzki, A. Evans, Mater. Sci. Eng. A 799 (2021) 140154.
DOI URL |
[65] |
K.A. Padmanabhan, Mater. Sci. Eng. A 304-306 (2001) 200-205.
DOI URL |
[66] |
S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater. 165 (2019) 444-458.
DOI |
[67] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
[68] |
T. Ungár, S. Ott, P.G. Sanders, A. Borbély, J.R. Weertman, Acta Mater. 46 (1998) 3693-3699.
DOI URL |
[69] |
N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P.K. Liaw, R.S. Mishra, JOM 67 (2015) 1007-1013.
DOI URL |
[70] |
A. Sarkar, S. Sanyal, T.K. Bandyopadhyay, S. Mandal, Mater. Sci. Eng. A 767 (2019) 138402.
DOI URL |
[71] |
U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171-273.
DOI URL |
[1] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[2] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[3] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[4] | Renquan Wang, Tingchuan Zhou, Zhiyong Zhong. Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties [J]. J. Mater. Sci. Technol., 2022, 99(0): 1-8. |
[5] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[6] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[7] | Yanyu Song, Duo Liu, Guobiao Jin, Haitao Zhu, Naibin Chen, Shengpeng Hu, Xiaoguo Song, Jian Cao. Fabrication of Si3N4/Cu direct-bonded heterogeneous interface assisted by laser irradiation [J]. J. Mater. Sci. Technol., 2022, 99(0): 169-177. |
[8] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
[9] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[10] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
[11] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[12] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[13] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[14] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[15] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||