J. Mater. Sci. Technol. ›› 2022, Vol. 116: 151-160.DOI: 10.1016/j.jmst.2021.11.026
• Research Article • Previous Articles Next Articles
Meng Caia, Peng Fengb, Han Yanb, Yuting Lib, Shijie Songb, Wen Lib, Hao Lib, Xiaoqiang Fanb,*(), Minhao Zhua,b,*(
)
Received:
2021-10-16
Revised:
2021-11-30
Accepted:
2021-11-30
Published:
2022-02-21
Online:
2022-07-26
Contact:
Xiaoqiang Fan,Minhao Zhu
About author:
zhuminhao@home.swjtu.edu.cn (M. Zhu).Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection[J]. J. Mater. Sci. Technol., 2022, 116: 151-160.
Fig. 1. (a) Schematic of conceivable sites for constructing heterostructures with respected to S in MoS2. (b) Top and side views of Ti3C2Tx@MoS2 heterostructures with various stacking configurations. The white, red, gray, dark, mazarine, and yellow balls represent H, O, Ti, C, S, and Mo atoms, respectively.
Fig. 3. Charge density differences of (a) Ti3C2(OH)2@MoS2 (I), (b) Ti3C2O2@MoS2 (I), and (c) Ti3C2F2@MoS2 (I). The blue regions represent electron depletion while the electron accumulation regions are indicated in red. Inset is schematic of slice position for charge density difference.
Fig. 4. Work function diagrams of (a) Ti3C2(OH)2 and (b) Ti3C2(OH)2@MoS2 (I), where the red line stands for Fermi level and green line represents vacuum level.
Fig. 9. Evolution of (a) |Z|0.01 Hz and (b) Rc of as-prepared coatings during immersion in 3.5 wt.% NaCl solution. (c-e) Electrical equivalent circle models used for EIS data fitting.
[1] |
K.S. Novoselov, A. Mishchenko, A. Carvalho A. H.C. Neto, Science 353 (2016) aac9439.
DOI URL |
[2] | K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666-669. |
[3] |
A.J. Mannix, B. Kiraly, M.C. Hersam, N.P. Guisinger, Nat. Rev. Chem. 1 (2017) 0014.
DOI URL |
[4] |
A.K. Geim, I.V. Grigorieva, Nature 499 (2013) 419-425.
DOI URL |
[5] |
E.J. Ward, J. Lacey, C. Crua, M.K. Dymond, K. Maleski, K. Hantanasirisakul, Y. Gogotsi, S. Sandeman, Adv. Funct. Mater. 30 (2020) 2000841.
DOI URL |
[6] |
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Science 341 (2013) 1502-1505.
DOI PMID |
[7] |
L.Y. Xiu, W. Pei, S. Zhou, Z.Y. Wang, P.J. Yang, J.J. Zhao, J.S. Qiu, Adv. Funct. Mater. 30 (2020) 1910028.
DOI URL |
[8] |
B. Fu, J.X. Sun, C. Wang, C. Shang, L.J. Xu, J.B. Li, H. Zhang, Small 17 (2021) 2006054.
DOI URL |
[9] |
A. Levitt, J.Z. Zhang, G. Dion, Y. Gogotsi, J.M. Razal, Adv. Funct. Mater. 30 (2020) 2000739.
DOI URL |
[10] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23 (2011) 4248-4253.
DOI URL |
[11] | J. Xu, X.H. Hu, X.H. Wang, X. Wang, Y.F. Ju, S.H. Ge, X.L. Lu, J.N. Ding, N.Y. Yuan, Y. Gogotsi, Energy Storage Mater. 33 (2020) 382-389. |
[12] |
Y. Zhang, W.H. Cheng, W.X. Tian, J.Y. Lu, L. Song, K.M. Liew, B.B. Wang, Y. Hu, ACS Appl. Mater. Interfaces 12 (2020) 6371-6382.
DOI URL |
[13] |
Y. Guo, T.R. Wang, Q. Yang, X.L. Li, H.F. Li, Y.K. Wang, T.P. Jiao, Z.D. Huang, B.B. Dong, W.J. Zhang, J. Fan, C.Y. Zhi, ACS Nano 14 (2020) 9089-9097.
DOI URL |
[14] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
[15] |
M. Seredych, C.E. Shuck, D. Pinto, M. Alhabeb, E. Precetti, G. Deysher, B. Ana- sori, N. Kurra, Y. Gogotsi, Chem. Mater. 31 (2019) 3324-3332.
DOI |
[16] |
Y. Liu, X. Zhang, S. Dong, Z. Ye, Y. Wei, J. Mater. Sci. 52 (2017) 2200-2209.
DOI URL |
[17] |
M.Q. Xue, Z.P. Wang, F. Yuan, X.H. Zhang, W. Wei, H. Tang, C.S. Li, RSC Adv. 7 (2017) 4312-4319.
DOI URL |
[18] |
D.F. Zhang, M. Ashton, A. Ostadhossein, A.C.T. van Duin, R.G. Hennig, S.B. Sin- nott, ACS Appl. Mater. Interfaces 9 (2017) 34467-34479.
DOI URL |
[19] | H. Yan, W. Li, H. Li, X.Q. Fan, M.H. Zhu, Prog. Org. Coat. 135 (2019) 156-167. |
[20] |
L. Xu, W.Q. Huang, W.Y. Hu, K. Yang, B.X. Zhou, A.L. Pan, G.F. Huang, Chem. Mater. 29 (2017) 5504-5512.
DOI URL |
[21] |
C. Chen, X.Q. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M.Q. Zhao, P. Ur- bankowski, L. Miao, J.J. Jiang, Y. Gogotsi, Angew. Chem. Int. Ed. 57 (2018) 1846-1850.
DOI PMID |
[22] |
Z. Hu, Y.Y. Xie, D.S. Yu, Q.N. Liu, L.M. Zhou, K. Zhang, P. Li, F. Hu, L.L. Li, S.L. Chou, S.J. Peng, ACS Nano 15 (2021) 8407-8417.
DOI URL |
[23] |
J.H. Li, B.L. Rui, W.X. Wei, P. Nie, L.M. Chang, Z.Y. Le, M.Q. Liu, H.R. Wang, L.M. Wang, X.G. Zhang, J. Power Sources 449 (2020) 227481.
DOI URL |
[24] | X. Wang, H. Li, H. Li, S. Lin, W. Ding, X.G. Zhu, Z.G. Sheng, H. Wang, X.B. Zhu, Y.P. Sun, Adv. Funct. Mater. 30 (2020) 1910302. |
[25] |
R. Chen, P. Wang, J. Chen, C. Wang, Y. Ao, Appl. Surf. Sci. 473 (2019) 11-19.
DOI |
[26] |
X. Xu, B. Sun, Z. Liang, H. Cui, J. Tian, ACS Appl. Mater. Interfaces 12 (2020) 26060-26067.
DOI URL |
[27] |
S. Grimme, J. Comput. Chem. 27 (2006) 1787-1799.
DOI URL |
[28] |
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 29 (2017) 7633-7644.
DOI URL |
[29] |
Q. Tang, Z. Zhou, P. Shen, J. Am. Chem. Soc. 134 (2012) 16909-16916.
DOI URL |
[30] |
J.M. Liao, B.S. Sa, J. Zhou, R. Ahuja, Z.M. Sun, J. Phys. Chem. C 118 (2014) 17594-17599.
DOI URL |
[31] |
L.Y. Gan, Y.J. Zhao, D. Huang, U. Schwingenschlögl, Phys. Rev. B 87 (2013) 245307.
DOI URL |
[32] |
E.R. Johnson, I.D. Mackie, G.A. DiLabio, J. Phys. Org. Chem. 22 (2009) 1127-1135.
DOI URL |
[33] |
E.R. Johnson, G.A. DiLabio, Chem. Phys. Lett. 419 (2006) 333-339.
DOI URL |
[34] |
S.D. Chao, A.H.T. Li, J. Phys. Chem. A 111 (2007) 9586-9590.
DOI URL |
[35] |
A. Ruzsinszky, J.P. Perdew, G.I. Csonka, J. Phys. Chem. A 109 (2005) 11015-11021.
PMID |
[36] |
M.J. Allen, D.J. Tozer, J. Chem. Phys. 117 (2002) 11113-11120.
DOI URL |
[37] |
Y.K. Zhang, W. Pan, W.T. Yang, J. Chem. Phys. 107 (1997) 7921-7925.
DOI URL |
[38] |
J.M. Perezjorda, A.D. Becke, Chem. Phys. Lett. 233 (1995) 134-137.
DOI URL |
[39] |
M. Khazaei, M. Arai, T. Sasaki, A. Ranjbar, Y.Y. Liang, S. Yunoki, Phys. Rev. B 92 (2015) 075411.
DOI URL |
[40] |
M. Ghidiu, M.R. Lukatskaya, M.-. Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516 (2014) 78-81.
DOI URL |
[41] |
J.J. Wang, C. Luo, T. Gao, A. Langrock A. C. Mignerey, C.S. Wang, Small 11 (2015) 473-481.
DOI URL |
[42] |
Y. Li, L. Ding, Z. Liang, Y. Xue, H. Cui, J. Tian, Chem. Eng. J. 383 (2020) 123178.
DOI URL |
[43] |
H. Yan, M. Cai, W. Li, X.Q. Fan, M.H. Zhu, J. Mater. Sci. Technol. 54 (2020) 144-159.
DOI URL |
[44] |
G. Zuo, Y. Wang, W.L. Teo, A. Xie, Y. Guo, Y. Dai, W. Zhou, D. Jana, Q. Xian, W. Dong, Y. Zhao, Angew. Chem. Int. Ed. 59 (2020) 11287-11292.
DOI URL |
[45] |
Y. Zhang, P. Li, L. Ji, X. Liu, H. Wan, L. Chen, H. Li, Z. Jin, Friction 9 (2021) 789-801.
DOI URL |
[46] |
J.F. Curry, M.A. Wilson, H.S. Luftman, N.C. Strandwitz, N. Argibay, M. Chandross, M.A. Sidebottom, B.A. Krick, ACS Appl. Mater. Interfaces 9 (2017) 28019-28026.
DOI URL |
[47] |
A. Rosenkranz, P.G. Grutzmacher, R. Espinoza, V.M. Fuenzalida, E. Blanco, N. Escalona, F.J. Gracia, R. Villarroel, L.C. Guo, R.Y. Kang, F. Mucklich, S. Suarez, Z.Y. Zhang, Appl. Surf. Sci. 494 (2019) 13-21.
DOI |
[48] |
H. Yan, J.C. Wang, C. Meng, X. Wang, S.J. Song, X.Q. Fan, L. Zhang, H. Li, W. Li, M.H. Zhu, Corros. Sci. 174 (2020) 108813.
DOI URL |
[1] | Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 192-198. |
[2] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[3] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[4] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[5] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[6] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
[7] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[8] | Yun Tian, Zhengyu Wei, Fan Li, Songjie Li, Lixiang Shao, Mengyuan He, Panfei Sun, Yuanyuan Li. Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2 hollow microspheres for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 216-223. |
[9] | Dhananjay Mishra, Niraj Kumar, Ajit Kumar, Seung Gi Seo, Sung Hun Jin. Mitigation on self-discharge behaviors via morphological control of hierarchical Ni-sulfides/Ni-oxides electrodes for long-life-supercapacitors [J]. J. Mater. Sci. Technol., 2022, 113(0): 217-228. |
[10] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[11] | Xinqiang Wang, Bin Wang, Yuanfu Chen, Mengya Wang, Qi Wu, Katam Srinivas, Bo Yu, Xiaojuan Zhang, Fei Ma, Wanli Zhang. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting [J]. J. Mater. Sci. Technol., 2022, 105(0): 266-273. |
[12] | Jingyi Ma, Xinyu Chen, Yaochen Sheng, Ling Tong, Xiaojiao Guo, Minxing Zhang, Chen Luo, Lingyi Zong, Yin Xia, Chuming Sheng, Yin Wang, Saifei Gou, Xinyu Wang, Xing Wu, Peng Zhou, David Wei Zhang, Chenjian Wu, Wenzhong Bao. Top gate engineering of field-effect transistors based on wafer-scale two-dimensional semiconductors [J]. J. Mater. Sci. Technol., 2022, 106(0): 243-248. |
[13] | Daxian Zuo, Cuiping Wang, Jiajia Han, Qinghao Han, Yanan Hu, Junwei Wu, Huajun Qiu, Qian Zhang, Xingjun Liu. One-step synthesis of novel core-shell bimetallic hexacyanoferrate for high performance sodium-storage cathode [J]. J. Mater. Sci. Technol., 2022, 114(0): 180-190. |
[14] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
[15] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||