J. Mater. Sci. Technol. ›› 2022, Vol. 116: 161-168.DOI: 10.1016/j.jmst.2021.12.012
• Research Article • Previous Articles Next Articles
W. Zhenga,b, J.M. Wua,b,*(), S. Chena,b, K.B. Yua,b, J. Zhanga,b, Y.S. Shia,b
Received:
2021-10-13
Revised:
2021-12-06
Accepted:
2021-12-06
Published:
2022-01-30
Online:
2022-07-26
Contact:
J.M. Wu
About author:
∗ E-mail address: jiaminwu@hust.edu.cn (J.M. Wu).W. Zheng, J.M. Wu, S. Chen, K.B. Yu, J. Zhang, Y.S. Shi. Improved mechanical properties of SiC fiber reinforced silica-based ceramic cores fabricated by stereolithography[J]. J. Mater. Sci. Technol., 2022, 116: 161-168.
Slurry code | Weight of powder (g) | Photocurable resin | Dispersant | Photoinitiator | |
---|---|---|---|---|---|
Empty Cell | SiO2 powder | SiC fiber | Empty Cell | Empty Cell | Empty Cell |
C0 | 71.5 | 0 | HDDA:PEGDA=6:4 (weight ration) | 3.0 wt% 41,000 (based on powder weight) | 1.0 wt% 184 (based on photocurable resin) |
C1 | 71.5 | 0.72 | |||
C2 | 71.5 | 1.46 | |||
C3 | 71.5 | 2.21 | |||
C4 | 71.5 | 2.98 | |||
C5 | 71.5 | 3.76 |
Table 1. Compositions of silica slurries prepared with powders with different contents of SiC fiber powder.
Slurry code | Weight of powder (g) | Photocurable resin | Dispersant | Photoinitiator | |
---|---|---|---|---|---|
Empty Cell | SiO2 powder | SiC fiber | Empty Cell | Empty Cell | Empty Cell |
C0 | 71.5 | 0 | HDDA:PEGDA=6:4 (weight ration) | 3.0 wt% 41,000 (based on powder weight) | 1.0 wt% 184 (based on photocurable resin) |
C1 | 71.5 | 0.72 | |||
C2 | 71.5 | 1.46 | |||
C3 | 71.5 | 2.21 | |||
C4 | 71.5 | 2.98 | |||
C5 | 71.5 | 3.76 |
Fig. 5. Microstructures of silica-based ceramics with 2 wt% SiC fiber addition sintered at different temperatures: (a) 1150 °C, (b) 1200 °C, (c) 1250 °C and (d) 1300 °C.
Fig. 6. (a) Bulk density, apparent porosity and (b) flexural strength, linear shrinkage of silica-based ceramics with 2 wt% SiC fiber addition sintered at different temperatures.
[1] |
Z.J. Zhao, Z.G. Yang, Z.Q. Yin, B. Chen, J.B. Yu, Z.M. Ren, G. Yu, G.L. Zhang, Mater. Chem. Phys. 272 (2021) 124925.
DOI URL |
[2] |
J.W. Zhong, Q.Y. Xu, Materials 13 (2020) 4579.
DOI URL |
[3] |
X.G. Wang, Y.L. Zhou, L. Zhou, X.Q. Xu, S.X. Niu, X. Li, X. Chen, J. Eur. Ceram. Soc. 41 (2021) 4650-4657.
DOI URL |
[4] | J. Park, J.G. Yeo, S. Yang, C.H. Cho, J. Ceram. Process. Res. 19 (2018) 20-24. |
[5] |
X. Chen, W.L. Zheng, J. Zhang, C.Y. Liu, J.Q. Han, L. Zhang, C.M. Liu, Ceram. Int. 46 (2020) 11819-11827.
DOI URL |
[6] | S. Singh, R. Singh, P.I. Mech. Eng. B-J. Eng. 230 (2016) 2143-2164. |
[7] | J.Y. Wang, S.R. Sama, P.C. Lynch, G. Manogharan, Procedia Manuf. 34 (2019) 683-694. |
[8] |
Q.L. Li, X.L. An, J.J. Liang, Y.S. Liu, K.H. Hu, Z.G. Lu, X.Y. Yue, J.G. Li, Y.Z. Zhou, X.F. Sun, J. Mater. Sci. Technol. 104 (2022) 19-32.
DOI URL |
[9] | X. He, Y.C. Ding, Z.P. Lei, S. Welch, W. Zhang, M. Dunn, K. Yu, Addit. Manuf. 40 (2021) 101921. |
[10] |
S. Santos, B. Soares, M. Leite, J. Jacinto, Virtual Phys. Prototy. 12 (2017) 322-332.
DOI URL |
[11] | Z. Liu, K. Song, B. Gao, T. Tian, H.O. Yang, X. Lin, W.D. Huang, J. Mater. Sci. Technol. 32 (2016) 320-325. |
[12] |
J.M. Wu, M. Li, S.S. Liu, Y.S. Shi, C.H. Li, W. Wang, Ceram. Int. 47 (2021) 15313-15318.
DOI URL |
[13] | S.B. Hua, J. Su, Z.L. Deng, J.M. Wu, L.J. Cheng, X. Yuan, F. Chen, H. Zhu, D.H. Qi, J. Xiao, Y.S. Shi, Addit. Manuf. 45 (2021) 102074. |
[14] |
H. Hassanin, K. Essa, A. Elshaer, M. Imbaby, H. H.EL-Mongy, T. A.EL-Sayed, J. Adv. Ceram. 10 (2021) 1-27.
DOI URL |
[15] |
B. Grigoryan, D.W. Sazer, A. Avila, J.L. Albritton, A. Padhye, A.H. Ta, P.T. Green- field, D.L. Gibbons, J.S. Miller, Sci. Rep. 11 (2021) 3171.
DOI PMID |
[16] |
H. Li, Y.S. Liu, Y.S. Liu, Q.F. Zeng, K.H. Hu, Z.G. Lu, J.J. Liang, J. Adv. Ceram. 9 (2020) 220-231.
DOI URL |
[17] |
I. UIIah, L. Cao, W. Cui, Q. Xu, R. Yang, K.L. Tang, X. Zhang, J. Mater. Sci. Technol. 88 (2021) 99-108.
DOI URL |
[18] |
M. Mirkhalaf, A. Dao, A. Schindeler, Little G. David, C.R. Dunstan, H. Zreiqat, Acta Biomater 132 (2021) 217-226.
DOI PMID |
[19] |
H. Li, K.H. Hu, Y.S. Liu, Z.G. Lu, J.J. Liang, Scripta Mater 194 (2021) 113665.
DOI URL |
[20] |
G. Zhao, K.H. Hu, Q. Feng, Z.G. Lu, Ceram. Int. 47 (2021) 17719-17725.
DOI URL |
[21] |
P. Cai, L. Guo, H. Wang, J.M. Li, J.T. Li, Y.X. Qiu, Q.M. Zhang, Q.T. Lue, Ceram. Int. 46 (2020) 16833-16841.
DOI URL |
[22] |
Y. Liu, B.S. Li, X.Y. Shu, Z.T. Zhang, G.L. Wei, S.Z. Chen, Y. Xie, X.R. Lu, J. Hazard. Mater. 403 (2021) 123588.
DOI URL |
[23] |
C.J. Bae, J.W. Halloran, J. Eur. Ceram. Soc. 39 (2019) 4299-4306.
DOI URL |
[24] |
W.L. Xu, Z.L. Lu, G.Q. Tian, K. Miao, D.C. Li, W.J. Zhu, F. Wang, H. Zhang, Y. Wang, Y. Song, J. Mater. Process. Technol. 271 (2019) 615-622.
DOI URL |
[25] |
J.F. Shang, X.Y. Tian, M. Luo, W.J. Zhu, D.C. Li, Y.J. Qin, Z.D. Shan, Compos. Sci. Technol. 192 (2020) 108096.
DOI URL |
[26] |
W. Zhu, H. Fu, Z.F. Xu, R.Z. Liu, P. Jiang, X.Y. Shao, Y.S. Shi, C.Z. Yan, J. Eur. Ceram. Soc. 38 (2018) 4604-4613.
DOI URL |
[27] |
W.C. Dong, H.Q. Ma, R.Z. Liu, T.X. Liu, S.J. Li, C.G. Bao, S.C. Song, Ceram. Int. 47 (2021) 24121-24129.
DOI URL |
[28] |
X. Chen, C.Y. Liu, W.L. Zheng, J.Q. Han, L. Zhang, C.M. Liu, Ceram. Int. 46 (2020) 196-203.
DOI URL |
[29] | I. Huseby, M. Borom, C. Greskovich, Am. Ceram. Soc. Bull. 58 (1979) 448-452. |
[30] | Z. Zheng, R.E. Tressler, K.E. Spear, Soc. 137 (1990) 2812-2816. |
[31] |
L. Luo, Y.G. Wang, L.P. Liu, L.Y. Duan, G.L. Wang, Y.H. Lu, Carbon 103 (2016) 73-83.
DOI URL |
[32] |
B. Harder, N. Jacobson, D. Myers, J. Am. Ceram. Soc. 96 (2013) 606-612.
DOI URL |
[33] |
Y.H. Kim, J.G. Yeo, J.S. Lee, S.C. Choi, Ceram. Int. 42 (2016) 14738-14742.
DOI URL |
[34] |
S. Chen, D.G. Zhu, X.S. Cai, Metall. Mater. Trans. 45 (2014) 3995-4001.
DOI URL |
[35] |
W. Wan, C.E. Huang, J. Yang, J.Z. Zeng, T. Qiu, J. Electron. Mater. 43 (2014) 2566-2572.
DOI URL |
[36] |
W. Wan, C.E. Huang, J. Yang, T. Qiu, Int. J. Appl. Glass Sci. 5 (2014) 401-409.
DOI URL |
[37] | S.H. Liu, P. Chen, D.H. Xu, Q.D. Yuan, Key Eng. Mater. 4348 (2017) 399-403. |
[38] | L.W. Yang, X.R. Xiao, L. Jing, J. Zhang, L.P. Liu, C.H. Zhao, G.L. Wang, J. Eur. Ce- ram. Soc. 41 (2021) 5388-5393. |
[39] |
G.Y. Cui, R.Y. Luo, L.Y. Wang, P. Huang, J.Q. Song, J.S. Wang, Appl. Surf. Sci. 570 (2021) 151065.
DOI URL |
[40] |
C.H. Chao, H.Y. Lu, J. Am. Ceram. Soc. 85 (2002) 773-779.
DOI URL |
[41] | C.J. Bae, Integrally Cored Ceramic Investment Casting Mold Fabricated By Ce- ramic Stereolithography, University of Michigan, 2008 Ph.D. Thesis. |
[42] | P.R. Beeley, R.F. Smart, Investment Casting, David Brown Book Co, United King- dom, 1994. |
[43] | D.R. Peacor, Z. Für Kristallogr. 138 (1973) 274-298. |
[44] |
G.B. Xia, L. He, D.A. Yang, J. Alloy. Compd. 531 (2012) 70-76.
DOI URL |
[45] |
R.C. Breneman, J.W. Halloran, J. Am. Ceram. Soc. 98 (2015) 1611-1617.
DOI URL |
[1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[2] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[3] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[4] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[5] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[6] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[7] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[8] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[9] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[10] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[11] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[12] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[13] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[14] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[15] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||