J. Mater. Sci. Technol. ›› 2022, Vol. 105: 266-273.DOI: 10.1016/j.jmst.2021.06.080
• Research Article • Previous Articles Next Articles
Xinqiang Wanga,1, Bin Wanga,1, Yuanfu Chena,b,*(
), Mengya Wangb, Qi Wub,*(
), Katam Srinivasa, Bo Yua, Xiaojuan Zhanga, Fei Maa, Wanli Zhanga
Received:2021-04-17
Revised:2021-06-07
Accepted:2021-06-10
Published:2022-04-10
Online:2021-09-23
Contact:
Yuanfu Chen,Qi Wu
About author:wuqi_zangda@163.com (Q. Wu).Xinqiang Wang, Bin Wang, Yuanfu Chen, Mengya Wang, Qi Wu, Katam Srinivas, Bo Yu, Xiaojuan Zhang, Fei Ma, Wanli Zhang. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting[J]. J. Mater. Sci. Technol., 2022, 105: 266-273.
Fig. 1. (a) Schematic representation of Fe2P/Ni2P HS/NF fabrication strategy. (b) SEM image of Ni(OH)2 NS/NF. (c, d) SEM images of Fe2P/Ni2P HS/NF. (e) TEM image of Fe2P/Ni2P HS. (f) HRTEM image of Fe2P/Ni2P HS. (g) The selected area electron diffraction of Fe2P/Ni2P HS. (h-k) STEM and corresponding EDS elemental mapping images of Fe2P/Ni2P HS.
Fig. 2. (a) Powder X-ray diffraction patterns of bare NF, Ni2P NS/NF, and Fe2P/Ni2P HS/NF. (b) The zoom-in XRD patterns of Ni2P NS/NF and Fe2P/Ni2P HS/NF. The XPS core level spectra of Ni2P NS/NF and Fe2P/Ni2P HS/NF: (c) Ni 2p, (d) Fe 2p, and (e) P 2p. (f) Valence-band XPS spectra of Ni2P NS/NF and Fe2P/Ni2P HS/NF.
Fig. 3. (a) Polarization curves of NF, Ni2P NS/NF, Fe2P NP/NF, Fe2P/Ni2P HS/NF, and RuO2/NF electrodes. (b) The OER activity comparisons at overpotentials of 10 and 50 mA cm-2 for NF, Ni2P NS/NF, Fe2P NP/NF, Fe2P/Ni2P HS/NF, and RuO2/NF. (c) Tafel slopes of NF, Ni2P NS/NF, Fe2P NP/NF, Fe2P/Ni2P HS/NF, and RuO2/NF. (d) Nyquist plots of Ni2P NS/NF, Fe2P NP/NF, and Fe2P/Ni2P HS/NF. (e) Estimated Cdl and corresponding ECSA of Ni2P NS/NF, Fe2P NP/NF, and Fe2P/Ni2P HS/NF. (f) Chronoamperometric current density curve (i-t) of Fe2P/Ni2P HS/NF (inset: corresponding CV cycling stability curves).
Fig. 4. (a) LSV polarization curves of NF, Ni2P NS/NF, Fe2P NP/NF, Fe2P/Ni2P HS/NF, and Pt/C/NF electrodes. (b) The HER activity comparisons at overpotentials of 10 and 50 mA cm-2 for NF, Ni2P NS/NF, Fe2P NP/NF, Fe2P/Ni2P HS/NF, and Pt/C/NF electrodes. (c) Tafel slopes of NF, Ni2P NS/NF, Fe2P NP/NF, Fe2P/Ni2P HS/NF, and Pt/C/NF. (d) Nyquist plots of Ni2P NS/NF, Fe2P NP/NF, and Fe2P/Ni2P HS/NF. (e) Estimated Cdl and corresponding ECSA of Ni2P NS/NF, Fe2P NP/NF, and Fe2P/Ni2P HS/NF. (f) Chronoamperometric current density curve (i-t) of Fe2P/Ni2P HS/NF (inset: corresponding CV cycling stability curves).
Fig. 5. (a) Optimized schematic models for Fe2P, Ni2P, and Fe2P/Ni2P HS with H adsorbed on adsorption sites. (b) Corresponding Gibbs free-energy diagrams of Fe2P(001), Ni2P(001), and Fe2P/Ni2P HS. (c) Charge density difference plot at the Fe2P/Ni2P interface. (Yellow stands for electron accumulation and cyan indicates the electron depletion) (d) The density of states (DOS) plots of the optimized Fe2P, Ni2P and Fe2P/Ni2P HS.
Fig. 6. (a) LSV polarization curves of NF||NF, RuO2/NF||Pt/C/NF, and Fe2P/Ni2P HS/NF||Fe2P/Ni2P HS/NF couples in 1.0 M KOH. (b) The water splitting performance comparison (ƞ10) between Fe2P/Ni2P HS/NF and recently reported catalysts. (c) The digital photograph of water electrolysis for Fe2P/Ni2P HS/NF||Fe2P/Ni2P HS/NF couple in a two-electrode device. (d) Theoretically calculated quantities of O2 and H2 versus its actual production of Fe2P/Ni2P HS/NF||Fe2P/Ni2P HS/NF couple under a constant current density of 10 mA cm-2 in 1.0 M KOH. (e) Chronoamperometric current density curve (i-t) of Fe2P/Ni2P HS/NF||Fe2P/Ni2P HS/NF couple in 1.0 M KOH.
| [1] |
X. Zhao, B. Pattengale, D. Fan, Z. Zou, Y. Zhao, J. Du, J. Huang, C. Xu, ACS Energy Lett 3 (2018) 2520-2526.
DOI URL |
| [2] |
M. Lao, K. Rui, G. Zhao, P. Cui, X. Zheng, S.X. Dou, W. Sun, Angew. Chem. Int. Ed. 58 (2019) 5432-5437.
DOI URL |
| [3] | X. Zhang, Y. Zhao, Y. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang,Adv. Energy Mater. 9 (2019) 1900881. |
| [4] | B. Wang, Y. Chen, X. Wang, J. Ramkumar, X. Zhang, B. Yu, D. Yang, M. Karpu-raranjith, W. Zhang, J.Mater.Chem. A8(2020)13558-13571. |
| [5] |
B. Wang, Y. Hu, B. Yu, X. Zhang, D. Yang, Y. Chen, J. Power Sources 433 (2019) 126688.
DOI URL |
| [6] |
C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H.J. Fan, C. Yang, Energy Environ. Sci. 13 (2020) 86-95.
DOI URL |
| [7] |
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed. 54 (2015) 9351-9355.
DOI URL |
| [8] |
J. Shan, C. Guo, Y. Zhu, S. Chen, L. Song, M. Jaroniec, Y. Zheng, S. Qiao, Chem 5 (2019) 445-459.
DOI URL |
| [9] |
I.K. Mishra, H. Zhou, J. Sun, F. Qin, K. Dahal, J. Bao, S. Chen, Z. Ren, Energy Environ. Sci. 11 (2018) 2246-2252.
DOI URL |
| [10] |
Y. Yao, S. Hu, W. Chen, Z. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X. Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y. Wang, X. Zheng, J. Dong, C. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W. Li, P. Strasser, Y. Wu, Y. Li, Nat. Catal. 2 (2019) 304-313.
DOI URL |
| [11] |
B. Yu, D. Chen, Z. Wang, F. Qi, X. Zhang, X. Wang, Y. Hu, B. Wang, W. Zhang, Y. Chen, J. He, W. He, Chem. Eng. J. 399 (2020) 125837.
DOI URL |
| [12] |
B. Wang, Y. Chen, X. Wang, X. Zhang, Y. Hu, B. Yu, D. Yang, W. Zhang, J. Power Sources 449 (2020) 227561.
DOI URL |
| [13] | Y. Ha, L. Shi, Z. Chen, R. Wu, Adv. Sci. 6 (2019) 1900272. |
| [14] |
Y. Yan, K. Bao, T. Liu, J. Cao, J. Feng, J. Qi, Chem. Eng. J. 401 (2020) 126092.
DOI URL |
| [15] |
J. Xie, Y. Xie, Chem. Eur. J. 22 (2016) 3588-3598.
DOI URL |
| [16] |
L. Liu, F. Yan, K. Li, C. Zhu, Y. Xie, X. Zhang, Y. Chen, J. Mater. Chem. A 7 (2019) 1083-1091.
DOI URL |
| [17] |
B. Yu, X. Wang, F. Qi, B. Zheng, J. He, J. Lin, W. Zhang, Y. Li, Y. Chen, ACS Appl. Mater. Interfaces 9 (2017) 7154-7159.
DOI URL |
| [18] |
X. Wang, B. Zheng, B. Yu, B. Wang, W. Hou, W. Zhang, Y. Chen, J. Mater. Chem. A 6 (2018) 7842-7850.
DOI URL |
| [19] |
B. Zheng, Y. Chen, F. Qi, X. Wang, W. Zhang, Y. Li, X. Li, 2D Materials 4 (2017) 25092.
DOI URL |
| [20] |
B. Wang, Y. Chen, Q. Wu, Y. Lu, X. Zhang, X. Wang, B. Yu, D. Yang, W. Zhang, J. Mater. Sci. Technol. 74 (2021) 11-20.
DOI |
| [21] |
Y. Wang, L. Liu, X. Zhang, F. Yan, C. Zhu, Y. Chen, J. Mater. Chem. A 7 (2019) 22412-22419.
DOI |
| [22] |
X. Yu, S. Zhang, C. Li, C. Zhu, Y. Chen, P. Gao, L. Qi, X. Zhang, Nanoscale 8 (2016) 10902-10907.
DOI URL |
| [23] |
L. Ji, J. Wang, X. Teng, T.J. Meyer, Z. Chen, ACS Catal. 10 (2019) 412-419.
DOI URL |
| [24] |
D. Das, K.K. Nanda, Nano Energy 30 (2016) 303-311.
DOI URL |
| [25] | H. Hu, Q. Zhang, F. Luo, L. Guo, K. Qu, Z. Yang, S. Xiao, Z. Xu, W. Cai, H. Cheng, Chem Electro Chem 6 (2019) 1413-1418. |
| [26] |
L. Stern, L. Feng, F. Song, X. Hu, Energ. Environ. Sci. 8 (2015) 2347-2351.
DOI URL |
| [27] | J. Jiao, W. Yang, Y. Pan, C. Zhang, S. Liu, C. Chen, D. Wang, Small 16 (2020) e2002124. |
| [28] |
Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang, S. Luo, C. Tian, M. Liu, X. Lu, Adv. Mater. 31 (2019) 1900178.
DOI URL |
| [29] |
L. Zeng, K. Sun, X. Wang, Y. Liu, Y. Pan, Z. Liu, D. Cao, Y. Song, S. Liu, C. Liu, Nano Energy 51 (2018) 26-36.
DOI URL |
| [30] |
H. Liu, M. Jin, D. Zhan, J. Wang, X. Cai, Y. Qiu, L. Lai, Appl. Catal. B-Environ. 272 (2020) 118951.
DOI URL |
| [31] |
H. Zhang, A.W. Maijenburg, X. Li, S.L. Schweizer, R.B. Wehrspohn, Adv. Funct. Mater. 30 (2020) 2003261.
DOI URL |
| [32] | B.H.R. Suryanto, Y. Wang, R.K. Hocking, W. Adamson, C. Zhao, Nat. Commun. 10 (2019). |
| [33] |
B. Wang, Y. Chen, Q. Wu, Y. Lu, X. Zhang, X. Wang, B. Yu, D. Yang, W. Zhang, J. Mater. Sci. Technol. 74 (2021) 11-20.
DOI |
| [34] |
T. Liu, A. Li, C. Wang, W. Zhou, S. Liu, L. Guo, Adv. Mater. 30 (2018) 1803590.
DOI URL |
| [35] |
K. Wang, X. She, S. Chen, H. Liu, D. Li, Y. Wang, H. Zhang, D. Yang, X. Yao, J. Mater. Chem. A 6 (2018) 5560-5565.
DOI URL |
| [36] |
H. Yan, Y. Xie, A. Wu, Z. Cai, L. Wang, C. Tian, X. Zhang, H. Fu, Adv. Mater. 31 (2019) 1901174.
DOI URL |
| [37] |
X. Wang, L. Chai, J. Ding, L. Zhong, Y. Du, T. Li, Y. Hu, J. Qian, S. Huang, Nano Energy 62 (2019) 745-753.
DOI URL |
| [38] |
H. Sun, Y. Lian, C. Yang, L. Xiong, P. Qi, Q. Mu, X. Zhao, J. Guo, Z. Deng, Y. Peng, Energ. Environ. Sci. 11 (2018) 2363-2371.
DOI URL |
| [39] |
X. Zhang, J. Li, Y. Yang, S. Zhang, H. Zhu, X. Zhu, H. Xing, Y. Zhang, B. Huang, S. Guo, E. Wang, Adv. Mater. 30 (2018) 1803551.
DOI URL |
| [40] |
J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Adv. Mater. 28 (2016) 215-230.
DOI URL |
| [41] |
C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y.P. Feng, S.J. Pennycook, J. Wang, Nano Energy 48 (2018) 73-80.
DOI URL |
| [42] |
X. Wang, Y. Chen, B. Yu, Z. Wang, H. Wang, B. Sun, W. Li, D. Yang, W. Zhang, Small 15 (2019) 1902613.
DOI URL |
| [43] |
X. Wang, J. He, B. Yu, B. Sun, D. Yang, X. Zhang, Q. Zhang, W. Zhang, L. Gu, Y. Chen, Appl. Catal. B-Environ. 258 (2019) 117996.
DOI URL |
| [44] |
H. Huang, A. Cho, S. Kim, H. Jun, A. Lee, J.W. Han, J. Lee, Adv. Funct. Mater. 30 (2020) 2003889.
DOI URL |
| [45] |
Q. Ma, C. Hu, K. Liu, S. Hung, D. Ou, H.M. Chen, G. Fu, N. Zheng, Nano Energy 41 (2017) 148-153.
DOI URL |
| [46] |
J. Zhang, Q. Zhang, X. Feng, Adv. Mater. 31 (2019) 1808167.
DOI URL |
| [47] |
H. Sun, Y. Min, W. Yang, Y. Lian, L. Lin, K. Feng, Z. Deng, M. Chen, J. Zhong, L. Xu, Y. Peng, ACS Catal 9 (2019) 8882-8892.
DOI URL |
| [48] |
H. Zhao, Y. Wang, L. Fang, W. Fu, X. Yang, S. You, P. Luo, H. Zhang, Y. Wang, J. Mater. Chem. A 7 (2019) 20357-20368.
DOI URL |
| [49] |
B. Qiu, L. Cai, Y. Wang, Z. Lin, Y. Zuo, M. Wang, Y. Chai, Adv. Funct. Mater. 28 (2018) 1706008.
DOI URL |
| [50] |
S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, ACS Catal 10 (2020) 9086-9097.
DOI URL |
| [51] |
B. Cao, Y. Cheng, M. Hu, P. Jing, Z. Ma, B. Liu, R. Gao, J. Zhang, Adv. Funct. Mater. 29 (2019) 1906316.
DOI URL |
| [52] | X.F. Lu, L. Yu, X.W.D. Lou, Sci. Adv. 5 (2019) v6009. |
| [53] |
L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Adv. Mater. 29 (2017) 1606793.
DOI URL |
| [54] |
C. Zhu, Z. Yin, W. Lai, Y. Sun, L. Liu, X. Zhang, Y. Chen, S. Chou, Adv. Energy Mater. 8 (2018) 1802327.
DOI URL |
| [55] |
Z. Yin, Y. Sun, C. Zhu, C. Li, X. Zhang, Y. Chen, J. Mater. Chem. A 5 (2017) 13648-13658.
DOI URL |
| [56] |
Y. Yan, J. Lin, J. Cao, S. Guo, X. Zheng, J. Feng, J. Qi, J. Mater. Chem. A 7 (2019) 24486-24492.
DOI URL |
| [57] |
B. Geng, F. Yan, L. Liu, C. Zhu, B. Li, Y. Chen, Chem. Eng. J. 406 (2021) 126815.
DOI URL |
| [58] |
D. Gao, J. Zhang, T. Wang, W. Xiao, K. Tao, D. Xue, J. Ding, J. Mater. Chem. A 4 (2016) 17363-17369.
DOI URL |
| [59] |
C. Du, M. Shang, J. Mao, W. Song, J. Mater. Chem. A 5 (2017) 15940-15949.
DOI URL |
| [60] |
F.S. Zhang, J.W. Wang, J. Luo, R.R. Liu, Z.M. Zhang, C.T. He, T.B. Lu, Chem. Sci. 9 (2018) 1375-1384.
DOI URL |
| [1] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
| [2] | Wangwang Qian, Zhe Chen, Jinfeng Zhang, Lichang Yin. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction [J]. J. Mater. Sci. Technol., 2022, 99(0): 215-222. |
| [3] | Kena Wu, Xiaonan Wei, Deng Li, Peng Hu. Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting [J]. J. Mater. Sci. Technol., 2022, 99(0): 270-276. |
| [4] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
| [5] | Shicheng Li, Hongyan Liang, Chong Li, Yongchang Liu. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 19-27. |
| [6] | Ning Li, Jingrui Han, Kaili Yao, Mei Han, Zumin Wang, Yongchang Liu, Lihua Liu, Hongyan Liang. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 90-97. |
| [7] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
| [8] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
| [9] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
| [10] | Yadong Liu, Cheng Tang, Weiwei Sun, Guanjia Zhu, Aijun Du, Haijiao Zhang. In-situ conversion growth of carbon-coated MoS2/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 8-15. |
| [11] | Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 102(0): 123-131. |
| [12] | Xiangchen Kong, Huiming Huang, Zhaoyang Li, Yanqin Liang, Zhenguo Li, Shengli Zhu. Facile synthesis of defected TiO2-x (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity [J]. J. Mater. Sci. Technol., 2021, 80(0): 171-178. |
| [13] | Zheng Zhang, Yuyang Kang, Li-Chang Yin, Ping Niu, Chao Zhen, Runze Chen, Xiangdong Kang, Fayu Wu, Gang Liu. Constructing CdSe QDs modified porous g-C3N4 heterostructures for visible light photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 95(0): 167-171. |
| [14] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
| [15] | J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 171-177. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
