J. Mater. Sci. Technol. ›› 2022, Vol. 105: 259-265.DOI: 10.1016/j.jmst.2021.07.031
• Research Article • Previous Articles Next Articles
Yihan Chena, Longxing Sua,b,*(
), Mingming Jiangc, Xiaosheng Fanga,*(
)
Received:2021-06-22
Revised:2021-07-04
Accepted:2021-07-11
Published:2021-09-20
Online:2021-09-20
Contact:
Longxing Su,Xiaosheng Fang
About author:xshfang@fudan.edu.cn (X. Fang).Yihan Chen, Longxing Su, Mingming Jiang, Xiaosheng Fang. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection[J]. J. Mater. Sci. Technol., 2022, 105: 259-265.
Fig. 1. (a) Schematic atom structure of ZnO; (b) schematic structure of as-grown ZnO MW by CVD; (c) the chemical molecular structure of PANI; (d) measured configuration of PANI/ZnO MW heterojunction UV photodetector.
Fig. 2. (a) XRD pattern and (b) normalized absorption spectrum of one single ZnO MW; (c) normalized absorption and (d) Raman spectra of PANI samples with aniline doses of 25 μL, 30 μL, 35 μL and 40 μL.
Fig. 3. (a) Optical image of one as-prepared ZnO MW on Si substrate, (b) SEM image of the as-prepared single ZnO MW; (c) SEM image of the PANI/ZnO MW core-shell heterostructure; (d) SEM image of the PANI from the core-shell heterostructure.
Fig. 4. (a-d) I-V curves of device #1, #2, #3, and #4 under dark and 350 nm light illumination; (e) rectification ratio (I+3V/I-3V) (black line) and rejection ratio (I350 nm/Idark) (red line) of the PANI/ZnO heterojunctions at -3 V as a function of aniline dose; (f) I-T curves of the four devices under a 350 nm light illumination on/off switch at -3 V.
Fig. 5. (a) Responsivities of device #2 and #3 under -3 V bias voltage; (b) 6-cycle transient time-resolved response of device #2 under 355 nm pulse laser illumination at -10 V bias voltage; (c) one single period time-resolved response of device #2 derived from (b); (d) schematic energy band diagram of the PANI/ZnO heterojunction.
Fig. 6. (a) Responsivities of device #3 under 0 V bias voltage; (b) I-T curve of device #3 under a 350 nm light on/off switch at 0 V, (c) 6-cycle transient time-resolved response of device #3 under 355 nm pulse laser illumination at 0 V bias voltage; (d) one single period time-resolved response of device #3 derived from (c); theoretical simulation of optical field distribution: (e) one single ZnO MW, (f) PANI/ZnO core-shell microwire, the incident light is vertical to one facet of the hexagonal structure.
| Photodetector | Bias | Dark current | Rejection ratio | Rectification ratio | Responsivity (mA/W) | Response time | Ref. |
|---|---|---|---|---|---|---|---|
| PANI NWs/ZnO 2D film | 0 V | - | 168000 | - | 8.75×10-4 | - | [ |
| PANI/β-Ga2O3 | 0 V | 0.08 pA | - | ∼10000 (±5 V) | 21 | 0.34 ms / 8.14 ms | [ |
| PANI/Se | 0V | 2 pA | 1100 | 30 (±5 V) | 120 | 4.5 μs / 42.84 ms | [ |
| PANI/MgZnO Thin film | 0 V | - | ∼ 10000 | - | 0.16 | < 0.3 s / < 0.3 s | [ |
| PEDOT:PSS/ZnO | 0 V | - | - | - | 3.5 | 5.8 ms / 7.3 ms | [ |
| Spiro-MeOTAD /ZnO | 0 V | - | 300 | ∼230 (±0.52 V) | 17 | 0.2 ms / 0.95 ms | [ |
| PANI/ZnO MW | -3 V | 0.8 pA | 3566 | 749230 (±3 V) | 37 | 50 μs / 4.63 ms @-10 V | This work |
| PANI/ZnO MW | 0 V | - | - | - | 0.56 | 0.11 ms / 1.45 ms | This work |
Table 1. Performance parameter comparison of the reported organic/inorganic heterojunction photodetectors
| Photodetector | Bias | Dark current | Rejection ratio | Rectification ratio | Responsivity (mA/W) | Response time | Ref. |
|---|---|---|---|---|---|---|---|
| PANI NWs/ZnO 2D film | 0 V | - | 168000 | - | 8.75×10-4 | - | [ |
| PANI/β-Ga2O3 | 0 V | 0.08 pA | - | ∼10000 (±5 V) | 21 | 0.34 ms / 8.14 ms | [ |
| PANI/Se | 0V | 2 pA | 1100 | 30 (±5 V) | 120 | 4.5 μs / 42.84 ms | [ |
| PANI/MgZnO Thin film | 0 V | - | ∼ 10000 | - | 0.16 | < 0.3 s / < 0.3 s | [ |
| PEDOT:PSS/ZnO | 0 V | - | - | - | 3.5 | 5.8 ms / 7.3 ms | [ |
| Spiro-MeOTAD /ZnO | 0 V | - | 300 | ∼230 (±0.52 V) | 17 | 0.2 ms / 0.95 ms | [ |
| PANI/ZnO MW | -3 V | 0.8 pA | 3566 | 749230 (±3 V) | 37 | 50 μs / 4.63 ms @-10 V | This work |
| PANI/ZnO MW | 0 V | - | - | - | 0.56 | 0.11 ms / 1.45 ms | This work |
| [1] |
H.Y. Chen, H. Liu, Z.M. Zhang, K. Hu, X.S. Fang, Adv. Mater. 28 (2016) 403-433.
DOI URL |
| [2] |
S. Chu, G.P. Wang, W.H. Zhou, Y.Q. Lin, L. Chernyak, J.Z. Zhao, J.Y. Kong, L. Li, J.J. Ren, J.L. Liu, Nat. Nanotechnol. 6 (2011) 506-510.
DOI URL |
| [3] |
X. Dai, S. Zhang, Z.L. Wang, G. Adamo, H. Liu, Y.Z. Huang, C. Couteau, C. Soci, Nano Lett 14 (2014) 2688-2693.
DOI URL |
| [4] |
X.S. Fang, L.F. Hu, K.F. Huo, B. Gao, L.J. Zhao, M.Y. Liao, P.K. Chu, Y. Bando, D. Golberg, Adv. Funct. Mater. 21 (2011) 3907-3915.
DOI URL |
| [5] |
T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B.S. Ooi, P. Bhat-tacharya, Nano Lett 14 (2014) 4535-4541.
DOI URL |
| [6] |
L.F. Hu, J. Yan, M.Y. Liao, L.M. Wu, X.S. Fang, Small 7 (2011) 1012-1017.
DOI URL |
| [7] |
L.X. Su, W.X. Ouyang, X.S. Fang, J. Semicond. 42 (2021) 052301.
DOI URL |
| [8] |
C. Xie, X.T. Lu, Y. Liang, H.H. Chen, L. Wang, C.Y. Wu, D. Wu, W.H. Yang, L.B. Luo, J. Mater. Sci. Technol. 72 (2021) 189-196.
DOI URL |
| [9] | E.M. Song, C.H. Chiang, R. Li, X. Jin, J.N. Zhao, M. Hill, Y. Xia, L.Z. Li, Y.M. Huang, S.M. Won, K.J. Yu, X. Sheng, H. Fang, M.A. Alam, Y.G. Huang, J. Viventi, J.K. Chang, J.A. Rogers, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 15398-15406. |
| [10] |
R. Yang, R.Z. Li, Y. Cao, Y.Q. Wei, Y.F. Miao, W.L. Tan, X.C. Jiao, H. Chen, L.D. Zhang, Q. Chen, H.T. Zhang, W. Zou, Y.M. Wang, M. Yang, C. Yi, N.N. Wang, F. Gao, C.R. McNeill, T.S. Qin, J.P. Wang, W. Huang, Adv. Mater. 30 (2018) 1804771.
DOI URL |
| [11] |
S. Cai, X.J. Xu, W. Yang, J.X. Chen, X.S. Fang, Adv. Mater. 31 (2019) 1808138.
DOI URL |
| [12] |
X.J. Xu, J.X. Chen, S. Cai, Z.H. Long, Y. Zhang, L.X. Su, S.S. He, C.Q. Tang, P. Liu, H.S. Peng, X.S. Fang, Adv. Mater. 30 (2018) 1803165.
DOI URL |
| [13] |
M.E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M.B. Bavinck, M.A. Verhei-jen, E.P.A.M. Bakkers, L.P. Kouwenhoven, V. Zwiller, Nat. Commun. 3 (2012) 737.
DOI URL |
| [14] |
A.M. Leach, M. McDowell, K. Gall, Adv. Funct. Mater. 17 (2007) 43-53.
DOI URL |
| [15] |
Y.G. Sun, J.A. Rogers, Nano Lett 4 (2004) 1953-1959.
DOI URL |
| [16] |
Y.J. Gong, S.B. Yang, L. Zhan, L.L. Ma, R. Vajtai, P.M. Ajayan, Adv. Funct. Mater. 24 (2014) 125-130.
DOI URL |
| [17] |
L.B. Tang, X.M. Li, R.B. Ji, K.S. Teng, G. Tai, J. Ye, C.S. Wei, S.P. Lau, J. Mater. Chem. 22 (2012) 5676-5683.
DOI URL |
| [18] |
H.T. Ng, J. Li, M.K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Science 300 (2003) 1249.
DOI URL |
| [19] |
Y.J. Hong, H.S. Jung, J. Yoo, Y.J. Kim, C.H. Lee, M. Kim, G.C. Yi, Adv. Mater. 21 (2009) 222.
DOI URL |
| [20] |
J.Y. Xu, E. Oksenberg, R. Popovitz-Biro, K. Rechav, E. Joselevich, J. Am. Chem. Soc. 139 (2017) 15958-15967.
DOI URL |
| [21] |
P. Chen, S.J. Chua, Y.D. Wang, M.D. Sander, C.G. Fonstad, Appl. Phys. Lett. 87 (2005) 143111.
DOI URL |
| [22] |
O.K. Zahr, A.S. Blum, Nano Lett 12 (2012) 629-633.
DOI URL |
| [23] |
W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S.K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, Laser Photonics Rev. 6 (2012) 47-73.
DOI URL |
| [24] |
D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70 (1997) 2230-2232.
DOI URL |
| [25] |
Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72 (1998) 3270-3272.
DOI URL |
| [26] |
K.W. Liu, M. Sakurai, M. Aono, Sensors 10 (2010) 8604-8634.
DOI URL |
| [27] |
C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett 7 (2007) 1003-1009.
PMID |
| [28] |
M.M. Jiang, G.H. He, H.Y. Chen, Z.Z. Zhang, L.X. Zheng, C.X. Shan, D.Z. Shen, X.S. Fang, Small 13 (2017) 1604034.
DOI URL |
| [29] |
F. Maldonado, A. Stashans, J. Phys. Chem. Solids 71 (2010) 784-787.
DOI URL |
| [30] |
C.H. Park, S.B. Zhang, S.H. Wei, Phys. Rev. B 66 (2002) 073202.
DOI URL |
| [31] |
I.S. Jeong, J.H. Kim, S. Im, Appl. Phys. Lett. 83 (2003) 2946-2948.
DOI URL |
| [32] |
W.I. Park, G.C. Yi, Adv. Mater. 16 (2004) 87-90.
DOI URL |
| [33] |
L.X. Su, Q.L. Zhang, T.Z. Wu, M.M. Chen, Y.Q. Su, Y. Zhu, R. Xiang, X.C. Gui, Z.K. Tang, Appl. Phys. Lett. 105 (2014) 072106.
DOI URL |
| [34] |
H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, H. Hosono, Appl. Phys. Lett. 83 (2003) 1029-1031.
DOI URL |
| [35] |
M.R. Hasan, T. Xie, S.C. Barron, G.N. Liu, N.V. Nguyen, A. Motayed, M.V. Rao, R. Debnath, APL Mater. 3 (2015) 106101.
DOI URL |
| [36] |
M. Izaki, T. Shinagawa, K.T. Mizuno, Y. Ida, M. Inaba, A. Tasaka, J. Phys. D: Appl. Phys. 40 (2007) 3326-3329.
DOI URL |
| [37] |
M. Pirhashemi, A. Habibi-Yangjeh, J. Mater. Sci. Technol. 34 (2018) 1891-1901.
DOI |
| [38] |
S. Bhadra, S. Chattopadhyay, N.K. Singha, D. Khastgir, J. Appl. Polym. Sci. 108 (2008) 57-64.
DOI URL |
| [39] |
K.P. Nazeer, S.A. Jacob, M. Thamilselvan, D. Mangalaraj, S.K. Narayandass, J. Yi, Polym. Int. 53 (2004) 898-902.
DOI URL |
| [40] |
H.Y. Chen, P.P. Yu, Z.Z. Zhang, F. Teng, L.X. Zheng, K. Hu, X.S. Fang, Small 12 (2016) 5809-5816.
DOI URL |
| [41] |
Y.F. Wang, L. Li, H.B. Wang, L.X. Su, H.Y. Chen, W.P. Bian, J.G. Ma, B.S. Li, Z.G. Liu, A.D. Shen, Nanoscale 12 (2020) 1406-1413.
DOI URL |
| [42] | C. Tusche, H.L. Meyerheim, J. Kirschner, Phys.Rev.Lett. 99(2007)026102. |
| [43] | L.X. Wang, F.S. Wang, Chin. J. Appl. Chem. 7 (1990) 1-10. |
| [44] |
J. Cai, X.J. Xu, L.X. Su, W. Yang, H.Y. Chen, Y. Zhang, X.S. Fang, Adv. Opt. Mater. 6 (2018) 1800213.
DOI URL |
| [45] |
B. Zhao, F. Wang, H.Y. Chen, Y.P. Wang, M.M. Jiang, X.S. Fang, D.X. Zhao, Nano Lett 15 (2015) 3988-3993.
DOI PMID |
| [46] | S.M. Sze, Kwok K. Ng, in: Physics of Semiconductor Devices, John Wiley & Sons, 2006, pp. 91-92. third ed.. |
| [47] |
J.T. Li, C.X. Xu, H.Y. Nan, M.M. Jiang, G.Y. Gao, Y. Lin, J. Dai, G.Y. Zhu, Z.H. Ni, S.F. Wang, Y. Li, ACS Appl. Mater. Interfaces 6 (2014) 10469-10475.
DOI URL |
| [48] |
S.X. Yang, J. Gong, Y.L. Deng, J. Mater. Chem. 22 (2012) 13899-13902.
DOI URL |
| [49] |
Y. Wang, L. Li, H. Wang, L. Su, H. Chen, W. Bian, J. Ma, B. Li, Z. Liu, A. Shen, Nanoscale 12 (2020) 1406-1413.
DOI URL |
| [50] |
P.P. Yu, K. Hu, H.Y. Chen, L.X. Zheng, X.S. Fang, Adv. Funct. Mater. 27 (2017) 1703166.
DOI URL |
| [51] |
W.B. Peng, X.F. Wang, R.M. Yu, Y.J. Dai, H.Y. Zou, A.C. Wang, Y.N. He, Z.L. Wang, Adv. Mater. 29 (2017) 1606698.
DOI URL |
| [52] |
O. Game, U. Singh, T. Kumari, A. Banpurkar, S. Ogale, Nanoscale 6 (2014) 503-513.
DOI URL |
| [1] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
| [2] | Yaling Wang, Wei Zhu, Yuan Deng, Pengcheng Zhu, Yuedong Yu, Shaoxiong Hu, Ruifeng Zhang. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer [J]. J. Mater. Sci. Technol., 2022, 103(0): 1-7. |
| [3] | Jiashun Wang, Linlin Wang, Jiangyong Diao, Xi Xie, Guoming Lin, Qing Jia, Hongyang Liu, Guoxin Sui. Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene [J]. J. Mater. Sci. Technol., 2022, 103(0): 209-214. |
| [4] | Chi Liu, Xu-Qi Yang, Wei Ma, Xin-Zhe Wang, Hai-Yan Jiang, Wen-Cai Ren, Dong-Ming Sun. A silicon-graphene-silicon transistor with an improved current gain [J]. J. Mater. Sci. Technol., 2022, 104(0): 127-130. |
| [5] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
| [6] | Chang Feng, Zhuoyuan Chen, Jing Tian, Jiangping Jing, Li Ma, Jian Hou. Fabrication of three-dimensional WO3/ZnWO4/ZnO multiphase heterojunction system with electron storage capability for significantly enhanced photoinduced cathodic protection performance [J]. J. Mater. Sci. Technol., 2021, 90(0): 183-193. |
| [7] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
| [8] | Can Li, Fan Feng, Jie Jian, Youxun Xu, Fan Li, Hongqiang Wang, Lichao Jia. Boosting carrier dynamics of BiVO4 photoanode via heterostructuring with ultrathin BiOI nanosheets for enhanced solar water splitting [J]. J. Mater. Sci. Technol., 2021, 79(0): 21-28. |
| [9] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
| [10] | Xiangchen Kong, Huiming Huang, Zhaoyang Li, Yanqin Liang, Zhenguo Li, Shengli Zhu. Facile synthesis of defected TiO2-x (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity [J]. J. Mater. Sci. Technol., 2021, 80(0): 171-178. |
| [11] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
| [12] | Sai Gao, Guozheng Zhang, Yi Wang, Xiaopeng Han, Ying Huang, Panbo Liu. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 88(0): 56-65. |
| [13] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
| [14] | Peng Wan, Mingming Jiang, Tong Xu, Yang Liu, Caixia Kan. High-mobility induced high-performance self-powered ultraviolet photodetector based on single ZnO microwire/PEDOT:PSS heterojunction via slight ga-doping [J]. J. Mater. Sci. Technol., 2021, 93(0): 33-40. |
| [15] | Kun Ye, Bochong Wang, Anmin Nie, Kun Zhai, Fusheng Wen, Congpu Mu, Zhisheng Zhao, Jianyong Xiang, Yongjun Tian, Zhongyuan Liu. Broadband photodetector of high quality Sb2S3 nanowire grown by chemical vapor deposition [J]. J. Mater. Sci. Technol., 2021, 75(0): 14-20. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
