J. Mater. Sci. Technol. ›› 2022, Vol. 105: 274-285.DOI: 10.1016/j.jmst.2021.06.077
• Research Article • Previous Articles Next Articles
Yu-qin Zhanga, Wei-li Chenga,b,*(
), Hui Yuc, Hong-xia Wanga,b, Xiao-feng Niua,b, Li-fei Wanga,b, Hang Lia
Received:2021-04-20
Revised:2021-06-12
Accepted:2021-06-12
Published:2021-09-23
Online:2021-09-23
Contact:
Wei-li Cheng
About author:*E-mail address: chengweili7@126.com (W.-l. Cheng).Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression[J]. J. Mater. Sci. Technol., 2022, 105: 274-285.
| Sample code | Sample condition | Sample code | Sample condition |
|---|---|---|---|
| B0 | Mg-0.5Bi | B2 | Mg-2.0Bi |
| B0-HC0.075 | Mg-0.5Bi alloy compressed at a true strain of 0.075 | B2-HC0.075 | Mg-2.0Bi alloy compressed at a true strain of 0.075 |
| B0-HC0.15 | Mg-0.5Bi alloy compressed at a true strain of 0.15 | B2-HC0.15 | Mg-2.0Bi alloy compressed at a true strain of 0.15 |
| B0-HC0.30 | Mg-0.5Bi alloy compressed at a true strain of 0.30 | B2-HC0.30 | Mg-2.0Bi alloy compressed at a true strain of 0.30 |
Table 1. The condition investigated for the Mg-0.5Bi and M-2.0Bi alloys compressed at different strains.
| Sample code | Sample condition | Sample code | Sample condition |
|---|---|---|---|
| B0 | Mg-0.5Bi | B2 | Mg-2.0Bi |
| B0-HC0.075 | Mg-0.5Bi alloy compressed at a true strain of 0.075 | B2-HC0.075 | Mg-2.0Bi alloy compressed at a true strain of 0.075 |
| B0-HC0.15 | Mg-0.5Bi alloy compressed at a true strain of 0.15 | B2-HC0.15 | Mg-2.0Bi alloy compressed at a true strain of 0.15 |
| B0-HC0.30 | Mg-0.5Bi alloy compressed at a true strain of 0.30 | B2-HC0.30 | Mg-2.0Bi alloy compressed at a true strain of 0.30 |
Fig. 1. Microstructure and texture of the extruded (a-d) B0 and (e-h) B2 alloys: (a, e) inverse pole figure map, (b, f) average grain size, (c, g) (0001) pole figures and (d, h) ED inverse pole figures.
Fig. 2. The distribution, morphology and microstructure of the second phase in extruded Mg-Bi alloys: SEM images of (a) B0 alloy, (b) B2 alloy, (c) XRD patterns of extruded B0 and B2 alloys, (d) TEM and (e) SAED pattern of the second phase.
Fig. 3. (a) True stress-strain curve of extruded B0 and B2 alloys compressed at 200°C with strain rate of 10 s-1. (b) The corresponding strain-hardening rate curve.
Fig. 4. Texture development during compression at different strains: (a, e, i) (0001) pole figures of B0 alloy: (a) 0.075, (e) 0.15, (i) 0.30; (b, f, i) inverse pole figures of B0 alloy: (b) 0.075, (f) 0.15, (i) 0.30; (c, j, k) (0001) pole figures of Mg-2.0Bi alloy: (c) 0.075, (j) 0.15, (k) 0.30 and (d, h, l) inverse pole figures of Mg-2B alloy: (d) 0.075, (h) 0.15, (l) 0.30.
| Turestrain | ETW (%) | CTW (%) | DTW (%) | DRX (%) | Grain Size (μm) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mg-0.5Bi | Mg-2.0Bi | Mg-0.5Bi | Mg-2.0Bi | Mg-0.5Bi | Mg-2.0Bi | Mg-0.5Bi | Mg-2.0Bi | Mg-0.5Bi | Mg-2.0Bi | |
| 0.075 | 20.7 | 18.8 | 0.0417 | 0.0448 | 0.0527 | 0.0138 | 8.9 | 13.4 | 6.02 | 5.23 |
| 0.15 | 4.29 | 3.32 | 0.612 | 0.392 | 0.911 | 1.13 | 11.6 | 10.5 | 5.94 | 5.68 |
| 0.30 | 2.15 | 1.78 | 0.784 | 0.339 | 1.09 | 1.35 | 15.4 | 13.1 | 5.43 | 5.83 |
Table 2. Volume fraction of different twins types and DRX and the average grain size at the different strains of B0 and B2 alloys.
| Turestrain | ETW (%) | CTW (%) | DTW (%) | DRX (%) | Grain Size (μm) | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mg-0.5Bi | Mg-2.0Bi | Mg-0.5Bi | Mg-2.0Bi | Mg-0.5Bi | Mg-2.0Bi | Mg-0.5Bi | Mg-2.0Bi | Mg-0.5Bi | Mg-2.0Bi | |
| 0.075 | 20.7 | 18.8 | 0.0417 | 0.0448 | 0.0527 | 0.0138 | 8.9 | 13.4 | 6.02 | 5.23 |
| 0.15 | 4.29 | 3.32 | 0.612 | 0.392 | 0.911 | 1.13 | 11.6 | 10.5 | 5.94 | 5.68 |
| 0.30 | 2.15 | 1.78 | 0.784 | 0.339 | 1.09 | 1.35 | 15.4 | 13.1 | 5.43 | 5.83 |
Fig. 6. The twining behavior of B0-HC0.075 and B2-HC0.075 alloys: (a, b) inverse pole figure map, (c, d) corresponding boundary misorientation map, (e, f) misorientation angle distribution map and corresponding axis distribution, (g, h) (0001) pole figure of {10-12} extension twin.
Fig. 7. The DRX of B0-HC0.30 and B2-HC0.30 alloys from EBSD: (a, b) inverse pole figure map, (c, d) DRXed grain regions, (e, f) misorientation angle distribution map and corresponding axis distribution, (g, h) (0001) pole figure of DRXed and unDRXed regions.
Fig. 8. The variants of { $10\bar{1}2$} extension twin and the corresponding effect on texture evolution of parent grains for B0-HC0.075 and B2-HC0.075 alloys: inverse pole figures: (a, b) B0 alloy and (c, d) B2 alloy, (0001) pole figures: (e, f) B0 alloy and (g, h) B2 alloy.
Fig. 9. Effect of CDRX mechanism on the texture evolution in selected region R1 and R2 in Fig. 5(a) and (b): B0 alloy: (a) IPF map, (b) corresponding (0001) pole figure, (c) line profiles of misorientation angles along the arrow AB, B2 alloy: (d) IPF map, (e) corresponding (0001) pole figure, (f) line profiles of misorientation angles along the arrow AB.
Fig. 10. Effect of DDRX mechanism on the texture evolution in selected region R3 and R4 in Fig. 5(a) and (b): B0 alloy: (a) IPF map, (b) corresponding (0001) pole figure, B2 alloy: (c) IPF map, (d) corresponding (0001) pole figure.
Fig.11. The average SF for basal <a> slip, prismatic <a> slip, pyramidal <a> slip and pyramidal <c + a> slip for as-compressed B0 and B2 alloys with strains of 0, 0.075, 0.15, 030: (a) B0, (b) B2, (c) the kernel average misorientation value of as-compressed B0 and B2 alloys with strains of 0, 0.075, 0.15, 030.
| [1] |
M. Hao, W. Cheng, L. Wang, E. Mostaed, L. Bian, H. Wang, X. Niu, Mater. Sci. Eng. A 748 (2019) 418-427.
DOI URL |
| [2] |
X.J. Gu, W.L. Cheng, S.M. Cheng, Y.H. Liu, Z.F. Wang, H. Yu, Z.Q. Cui, L.F. Wang, H.X. Wang, J. Mater. Sci. Technol. 60 (2021) 77-89.
DOI URL |
| [3] | J.H. Cho, G.Y. Lee, Y.S. Lee, J. Alloys Compd. 813 (2020) 279-296. |
| [4] |
W.L. Cheng, M.J. Hao, L.F. Wang, H. Yu, H.X. Wang, Mater. Sci. Eng. A 789 (2020) 139606.
DOI URL |
| [5] | X. Li, C. Cheng, Q. Le, X. Zhou, Q. Liao, X. Chen, Y. Jia, P. Wang, J. Alloys Compd. (2019) 947-956. |
| [6] |
J. Zhang, G. Xi, X. Wan, C. Fang, Acta Mater 133 (2017) 208-216.
DOI URL |
| [7] |
B. Mao, Y. Liao, B. Li, Scr. Mater. 165 (2019) 89-93.
DOI URL |
| [8] |
S.-H. Kim, S.W. Lee, B.G. Moon, H.S. Kim, Y.M. Kim, S.H. Park, J. Mater. Res. Technol. 8 (2019) 5254-5270.
DOI URL |
| [9] |
S.H. Kim, S.W. Lee, B.G. Moon, H.S. Kim, S.H. Park, J. Mater. Sci. Technol. 46 (2020) 225-236.
DOI URL |
| [10] |
W. Cheng, Q. Tian, H. Yu, B.S. You, H. Wang, Mater. Des. 85 (2015) 762-770.
DOI URL |
| [11] |
Y. Liu, Y. Li, H. Zhang, Q. Zhu, X. Qi, J. Wang, J. Wang, P. Jin, X. Zeng, Mater. Charact. 162 (2020) 110192.
DOI URL |
| [12] |
H. Mirzadeh, M. Roostaei, M.H. Parsa, R. Mahmudi, Mater. Des. 68 (2015) 228-231.
DOI URL |
| [13] |
H. Xiao, B. Tang, C. Liu, Y. Gao, S. Yu, S. Jiang, Mater. Sci. Eng. A 645 (2015) 241-247.
DOI URL |
| [14] |
A. Nye, A.C. Leff, C.M. Barr, M.L. Taheri, Scr. Mater. 146 (2018) 308-311.
DOI URL |
| [15] |
B. Song, Q. Yang, T. Zhou, L. Chai, N. Guo, T. Liu, S. Guo, R. Xin, J. Mater. Sci. Technol. 35 (2019) 2269-2282.
DOI |
| [16] |
Y. Gui, Y. Cui, H. Bian, Q. Li, L. Ouyang, A. Chiba, J. Mater. Sci. Technol. 80 (2021) 279-296.
DOI URL |
| [17] |
J. Go, J.U. Lee, H. Yu, S.H. Park, J. Mater. Sci. Technol. 44 (2020) 62-75.
DOI URL |
| [18] |
H. Somekawa, A. Singh, Scr. Mater. 150 (2018) 26-30.
DOI URL |
| [19] |
S.J. Meng, H. Yu, S.D. Fan, Y.M. Kim, S.H. Park, W.M. Zhao, B.S. You, K.S. Shin, Mater. Lett. 261 (2020) 127066.
DOI URL |
| [20] |
X. Cui, W. Fu, D. Fang, G. Bi, Z. Ren, S. Guo, S. Li, X. Ding, J. Sun, J. Mater. Sci. Technol. 66 (2021) 64-73.
DOI URL |
| [21] |
D. Guan, X. Liu, J. Gao, L. Ma, B. Wynne, W.M. Rainforth, J. Alloys Compd. 774 (2019) 556-564.
DOI URL |
| [22] |
J. Wang, M. Zhang, B. Shi, L. Zhang, P. Jin, Mater. Sci. Eng. A 797 (2020) 140113.
DOI URL |
| [23] |
M. Zhang, J. Wang, Y. Zhu, L. Zhang, P. Jin, Mater. Sci. Eng. A 775 (2020) 138978.
DOI URL |
| [24] |
B.-J. Lv, S. Wang, N. Cui, F. Guo, Mater. Sci. Eng. A 809 (2021) 140986.
DOI URL |
| [25] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
| [26] |
X. Shi, Y. Li, X. Zeng, Y. Liu, B. Chen, J. Lu, D. Li, J. Mater. Sci. Technol. 35 (2019) 1473-1478.
DOI URL |
| [27] |
H.J. Kim, S.-C. Jin, J.-G. Jung, S.H. Park, J. Mater. Sci. Technol. 71 (2021) 87-97.
DOI URL |
| [28] |
H. Zhang, Y. Li, Y. Liu, Q. Zhu, X. Qi, G. Zhu, J. Wang, P. Jin, X. Zeng, J. Mater. Sci. Technol. 81 (2021) 212-218.
DOI |
| [29] |
M. Wang, X.Y. Xu, H.Y. Wang, L.H. He, M.X. Huang, Acta Mater 201 (2020) 102-113.
DOI URL |
| [30] |
M. Hao, W. Cheng, L. Wang, E. Mostaed, L. Bian, H. Wang, X. Niu, J. Magn. Alloys. 8 (2020) 899-909.
DOI URL |
| [31] |
M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Acta Mater 157 (2018) 53-71.
DOI URL |
| [32] |
Z. Zhang, Q. Huo, Z. Xiao, A. Hashimoto, X. Yang, Mater. Sci. Eng. A. 772 (2020) 138816.
DOI URL |
| [33] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
| [34] |
Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. 178 (2020) 422-427.
DOI URL |
| [35] |
Y. Pang, Q. Li, Scr. Mater. 130 (2017) 223-228.
DOI URL |
| [36] |
Y. Pang, D. Sun, Q. Gu, K.-C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (4) (2016) 2404-2415.
DOI URL |
| [37] |
B. Zhu, X. Liu, C. Xie, J. Su, P. Guo, C. Tang, W. Liu, J. Mater. Sci. Technol. 50 (2020) 59-65.
DOI URL |
| [38] |
K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548-574.
DOI URL |
| [39] |
S. Meng, H. Yu, L. Li, J. Qin, S.K. Woo, Y. Go, Y.M. Kim, S.H. Park, W. Zhao, F. Yin, B.S. You, K.S. Shin, J. Alloys Compd. 834 (2020) 155216.
DOI URL |
| [40] |
S.W. Lee, S.H. Kim, W.K. Jo, W.H. Hong, W. Kim, B.G. Moon, S.H. Park, J. Alloys Compd. 791 (2019) 700-710.
DOI URL |
| [41] |
Q. Huang, H. Pan, A. Tang, Y. Ren, B. Song, G. Qin, M. Zhang, F. Pan, Mater. Sci. Eng. A 664 (2016) 43-48.
DOI URL |
| [1] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
| [2] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
| [3] | Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 126-139. |
| [4] | Jiangwei Wang, Anik H.M. Faisal, Xiyao Li, Youran Hong, Qi Zhu, Hongbin Bei, Ze Zhang, Scott X Mao, Christopher R. Weinberger. Discrete twinning dynamics and size-dependent dislocation-to twin transition in body-centred cubic tungsten [J]. J. Mater. Sci. Technol., 2022, 106(0): 33-40. |
| [5] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
| [6] | Lei Lei, Qinyang Zhao, Cong Wu, Yongqing Zhao, Shixing Huang, Weiju Jia, Weidong Zeng. Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 101-113. |
| [7] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
| [8] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
| [9] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
| [10] | K. Ma, Z.Y. Liu, X.X. Zhang, B.L. Xiao, Z.Y. Ma. Microstructure evolution and hot deformation behavior of carbon nanotube reinforced 2009Al composite with bimodal grain structure [J]. J. Mater. Sci. Technol., 2021, 70(0): 73-82. |
| [11] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
| [12] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
| [13] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
| [14] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
| [15] | Yuyang Tang, Yuqing Li, Xiaochang Xu, Ming Yue, Weiqiang Liu, Hongguo Zhang, Qingmei Lu, Weixing Xia. Analysis on deformation and texture formation mechanism of hot-deformed Nd-Fe-B magnets based on heterogeneous structure evolution [J]. J. Mater. Sci. Technol., 2021, 80(0): 28-35. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
