J. Mater. Sci. Technol. ›› 2022, Vol. 105: 122-130.DOI: 10.1016/j.jmst.2021.07.028
• Research Article • Previous Articles Next Articles
Fengnian Zhang, Fuhao Cheng, Chufei Cheng, Meng Guo, Yufeng Liu, Yang Miao(), Feng Gao, Xiaomin Wang
Received:
2021-05-15
Revised:
2021-06-23
Accepted:
2021-07-07
Published:
2021-09-20
Online:
2021-09-20
Contact:
Yang Miao
About author:
*E-mail address: miaoyang198781@163.com (Y. Miao).Fengnian Zhang, Fuhao Cheng, Chufei Cheng, Meng Guo, Yufeng Liu, Yang Miao, Feng Gao, Xiaomin Wang. Preparation and electrical conductivity of (Zr, Hf, Pr, Y, La) O high entropy fluorite oxides[J]. J. Mater. Sci. Technol., 2022, 105: 122-130.
Oxides | Crystal Structure | Space Group | rc (Å) | CN |
---|---|---|---|---|
ZrO2 | Tetragonal | P42/nmc | 0.84 | VIII |
HfO2 | Monoclinic | P21/c | 0.83 | VIII |
Pr6O11 | Cubic | - | 0.96 | VIII |
Y2O3 | Bixbyite | Ia-3 | 1.019 | VIII |
La2O3 | Trigonal | P63/mmc | 1.16 | VIII |
CeO2 | Cubic | Fm-3m | 0.97 | VIII |
Table 1. Crystal structure, space group, cationic radii (rc) and corresponding cation coordination number (CN) of selected oxides.
Oxides | Crystal Structure | Space Group | rc (Å) | CN |
---|---|---|---|---|
ZrO2 | Tetragonal | P42/nmc | 0.84 | VIII |
HfO2 | Monoclinic | P21/c | 0.83 | VIII |
Pr6O11 | Cubic | - | 0.96 | VIII |
Y2O3 | Bixbyite | Ia-3 | 1.019 | VIII |
La2O3 | Trigonal | P63/mmc | 1.16 | VIII |
CeO2 | Cubic | Fm-3m | 0.97 | VIII |
Secondary Phase | |||||||
---|---|---|---|---|---|---|---|
No. | Composition | 1300 °C | 1350 °C | 1400 °C | 1450 °C | 1500 °C | 1600 °C |
CCFO1 | (Zr0.2Hf0.2Pr0.2 Y0.2La0.2)O2-δ | Major | Major | No | No | No | No |
CCFO2 | (Zr0.1667Hf0.1667Pr0.1667 Y0.25La0.25)O2-δ | Major | Major | Major | No | No | No |
CCFO3 | (Zr0.1429Hf0.1429Pr0.1429 Y0.2857La0.2857)O2-δ | - | Major | Minor | Minor | No | No |
Table 2. Summary of phase structures of CFFOs at key temperatures.
Secondary Phase | |||||||
---|---|---|---|---|---|---|---|
No. | Composition | 1300 °C | 1350 °C | 1400 °C | 1450 °C | 1500 °C | 1600 °C |
CCFO1 | (Zr0.2Hf0.2Pr0.2 Y0.2La0.2)O2-δ | Major | Major | No | No | No | No |
CCFO2 | (Zr0.1667Hf0.1667Pr0.1667 Y0.25La0.25)O2-δ | Major | Major | Major | No | No | No |
CCFO3 | (Zr0.1429Hf0.1429Pr0.1429 Y0.2857La0.2857)O2-δ | - | Major | Minor | Minor | No | No |
Fig. 8. Impedance spectra and fitting curves for (a, d) CCFO1, (b, e) CCFO2, and (c, f) CCFO3 at a series of temperatures, (g) impedance spectra for electrode and CCFO1-3 at 750?°C, (h) Arrhenius plots of conductivity versus 1000/T and (i) in situ high temperature XRD of CCFO1 pellet.
CCFO1 | CCFO2 | CCFO3 | ||
---|---|---|---|---|
Lattice Parameter (Å) | 5.36270 | 5.36995 | 5.38075 | |
Transition Temperature (°C) | ∼1400 | ∼1450 | ∼1500 | |
ΔScation-sublattice | 1.61R | 1.58R | 1.55R | |
ρexp (g/cm3) | 6.58345 | 6.37967 | 5.9852 | |
ρcal (g/cm3) | 6.7366 | 6.5741 | 6.4430 | |
Relative density | 97.042% | 97.727% | 92.895% | |
Electrical conductivity | σ750 °C (S/cm) | 1.38 × 10-3 | 1.92 × 10-3 | 1.68 × 10-3 |
σ600 °C (S/cm) | 2.89 × 10-4 | 5.35 × 10-4 | 3.94 × 10-4 | |
Ea (eV) | 0.78 | 0.66 | 0.74 | |
R2 | 0.99985 | 0.99879 | 0.99989 |
Table 3. Structure information and other parameters of CCFOs.
CCFO1 | CCFO2 | CCFO3 | ||
---|---|---|---|---|
Lattice Parameter (Å) | 5.36270 | 5.36995 | 5.38075 | |
Transition Temperature (°C) | ∼1400 | ∼1450 | ∼1500 | |
ΔScation-sublattice | 1.61R | 1.58R | 1.55R | |
ρexp (g/cm3) | 6.58345 | 6.37967 | 5.9852 | |
ρcal (g/cm3) | 6.7366 | 6.5741 | 6.4430 | |
Relative density | 97.042% | 97.727% | 92.895% | |
Electrical conductivity | σ750 °C (S/cm) | 1.38 × 10-3 | 1.92 × 10-3 | 1.68 × 10-3 |
σ600 °C (S/cm) | 2.89 × 10-4 | 5.35 × 10-4 | 3.94 × 10-4 | |
Ea (eV) | 0.78 | 0.66 | 0.74 | |
R2 | 0.99985 | 0.99879 | 0.99989 |
Composition | δ | σ750 °C | σ600 °C |
---|---|---|---|
Hf0.2Zr0.2Ce0.2Y0.2Yb0.2O2-δ [ | 8.43% | ∼ 6.55 × 10-4 | - |
Hf0.25Zr0.25Ce0.25Y0.125Yb0.125O2-δ | 8.45% | ∼ 6.58 × 10-4 | |
Hf0.13Ce0.13Zr0.13Y0.3Gd0.3O1.70 (HEFO7-60) [ | 8.90% | - | 0.25 × 10-4 |
Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2O2 [ | 8.91% | - | ∼ 4.79 × 10-8 |
Hf0.25Ce0.25Zr0.25Y0.125Gd0.125O1.875 (HEFO7-25) | 9.54% | - | 3.5 × 10-4 |
Hf0.17Ce0.17Zr0.17Y0.25Gd0.25O1.75 (HEFO7-50) | 9.55% | - | 0.62 × 10-4 |
Hf0.23Ce0.23Zr0.23Y0.15Gd0.15O1.85 (HEFO7-30) | 9.64% | - | 2.6 × 10-4 |
Hf0.2Zr0.2Ce0.2Y0.2Gd0.2O1.8 (HEFO7-40) | 9.73% | - | 3.7 × 10-4 |
Hf0.25Zr0.25Ce0.25Y0.125Ca0.125O2-δ | 11.01% | ∼ 7.24 × 10-4 | - |
(Zr0.1429Hf0.1429Pr0.1429Y0.2857La0.2857)O2-δ (CCFO3) | 12.44% | 1.68 × 10-3 | 3.94 × 10-4 |
(Zr0.1667Hf0.1667Pr0.1667Y0.25La0.25)O2-δ (CCFO2) | 12.69% | 1.92 × 10-3 | 5.35 × 10-4 |
(Zr0.2Hf0.2Pr0.2Y0.2La0.2)O2-δ (CCFO1) | 12.71% | 1.38 × 10-3 | 2.89 × 10-4 |
(Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2 [ | 15.02% | - | - |
8YSZ [ | - | - | 9.2 × 10-3 |
GDC10 [ | - | - | 2.37 × 10-2 |
Table 4. Cation-size difference (δ) and high temperature electrical conductivities of fluorite oxides in previous reports (incomplete statistics).
Composition | δ | σ750 °C | σ600 °C |
---|---|---|---|
Hf0.2Zr0.2Ce0.2Y0.2Yb0.2O2-δ [ | 8.43% | ∼ 6.55 × 10-4 | - |
Hf0.25Zr0.25Ce0.25Y0.125Yb0.125O2-δ | 8.45% | ∼ 6.58 × 10-4 | |
Hf0.13Ce0.13Zr0.13Y0.3Gd0.3O1.70 (HEFO7-60) [ | 8.90% | - | 0.25 × 10-4 |
Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2O2 [ | 8.91% | - | ∼ 4.79 × 10-8 |
Hf0.25Ce0.25Zr0.25Y0.125Gd0.125O1.875 (HEFO7-25) | 9.54% | - | 3.5 × 10-4 |
Hf0.17Ce0.17Zr0.17Y0.25Gd0.25O1.75 (HEFO7-50) | 9.55% | - | 0.62 × 10-4 |
Hf0.23Ce0.23Zr0.23Y0.15Gd0.15O1.85 (HEFO7-30) | 9.64% | - | 2.6 × 10-4 |
Hf0.2Zr0.2Ce0.2Y0.2Gd0.2O1.8 (HEFO7-40) | 9.73% | - | 3.7 × 10-4 |
Hf0.25Zr0.25Ce0.25Y0.125Ca0.125O2-δ | 11.01% | ∼ 7.24 × 10-4 | - |
(Zr0.1429Hf0.1429Pr0.1429Y0.2857La0.2857)O2-δ (CCFO3) | 12.44% | 1.68 × 10-3 | 3.94 × 10-4 |
(Zr0.1667Hf0.1667Pr0.1667Y0.25La0.25)O2-δ (CCFO2) | 12.69% | 1.92 × 10-3 | 5.35 × 10-4 |
(Zr0.2Hf0.2Pr0.2Y0.2La0.2)O2-δ (CCFO1) | 12.71% | 1.38 × 10-3 | 2.89 × 10-4 |
(Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2 [ | 15.02% | - | - |
8YSZ [ | - | - | 9.2 × 10-3 |
GDC10 [ | - | - | 2.37 × 10-2 |
[1] |
Z. Lei, X. Liu, H. Wang, Y. Wu, S. Jiang, Z. Lu, Scripta Mater 165 (2019) 164-169.
DOI URL |
[2] |
W. Xu, H. Chen, K. Jie, Z. Yang, T. Li, S. Dai, Angew. Chem. Int. Ed. Engl. 58 (2019) 5018-5022.
DOI URL |
[3] | H. Chen, W.W. Lin, Z.H. Zhang, K. Jie, D.R. Mullins, X. Sang, S.-Z. Yang, C.J. Jafta, C.A. Bridges, X. Hu, R.R. Unocic, J. Fu, P. Zhang, S. Dai, ACS Mater. Lett. 1 (2019) 83-88. |
[4] |
R. Liu, H. Chen, K. Zhao, Y. Qin, B. Jiang, T. Zhang, G. Sha, X. Shi, C. Uher, W. Zhang, L. Chen, Adv. Mater. 29 (2017) 1702712.
DOI URL |
[5] |
S.H. Albedwawi, A.H. AlJaberi, N. Gregory, K. Polychronopoulou, Mater. Des. 202 (2021) 109534.
DOI URL |
[6] |
C.-F. Wu, D.E.S. Arifin, C.-A. Wang, J. Ruan, Polymer 138 (2018) 188-202.
DOI URL |
[7] |
H. Xiang, Y. Xing, F.-z. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, Y. Zhou, J. Adv. Ceram. 10 (2021) 385-441.
DOI URL |
[8] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Nat. Commun. 6 (2015) 8485.
DOI URL |
[9] |
M. Zhang, X. Xu, Y. Yue, M. Palma, M.J. Reece, H. Yan, Mater. Des. 200 (2021) 109447.
DOI URL |
[10] |
K. Chen, Y. Chen, J. Zhang, Y. Song, X. Zhou, M. Li, X. Fan, J. Zhou, Q. Huang, Ceram. Int. 47 (2021) 7582-7587.
DOI URL |
[11] |
Y. Sun, H. Xiang, F.-Z. Dai, X. Wang, Y. Xing, X. Zhao, Y. Zhou, J. Adv. Ceram. 10 (2021) 596-613.
DOI URL |
[12] |
X. Meng, J. Xu, J. Zhu, P. Zhang, A. Rydosz, M.J. Reece, F. Gao, Scripta Mater 194 (2021) 113714.
DOI URL |
[13] |
Y. Li, S. Wang, X. Wang, M. Yin, W. Zhang, J. Mater. Sci. Technol. 43 (2020) 32-39.
DOI URL |
[14] |
A.J. Wright, J. Luo, J. Mater. Sci. 55 (2020) 9812-9827.
DOI URL |
[15] |
A. Amiri, R. Shahbazian-Yassar, J. Mater. Chem. A 9 (2021) 782-823.
DOI URL |
[16] |
H.D. Xu, Z.H. Zhang, J.X. Liu, C.L. Do-Thanh, H. Chen, S.H. Xu, Q.J. Lin, Y. Jiao, J.L. Wang, Y. Wang, Y.Q. Chen, S. Dai, Nat. Commun. 11 (2020) 1-9.
DOI URL |
[17] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wan, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2892-2896.
DOI URL |
[18] |
M. Ahn, Y. Park, S.H. Lee, S. Chae, J. Lee, J.T. Heron, E. Kioupakis, W.D. Lu, J.D. Phillips, Adv. Electron. Mater. 7 (2021) 2001258.
DOI URL |
[19] |
H. Zhang, B. Zhao, F.-Z. Dai, H. Xiang, Z. Zhang, Y. Zhou, J. Mater. Sci. Technol. 77 (2020) 58-65.
DOI URL |
[20] |
J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega, P.E. Hopkins, K. Vecchio, J. Luo, J. Eur. Ceram. Soc. 38 (2018) 3578-3584.
DOI URL |
[21] |
K.P. Chen, X.T. Pei, L. Tang, H.R. Cheng, Z.M. Li, C.W. Li, X.W. Zhang, L. An, J. Eur. Ceram. Soc. 38 (2018) 4161-4164.
DOI URL |
[22] | J. D˛abrowa, M. Szymczak, M. Zajusz, A. Mikuła, M. Moździerz, K. Berent, M. Wytrwal-Sarna, A. Bernasik, M. Stygar, K. Świerczek, J.Eur.Ceram. Soc. 40 (2020) 5870-5881. |
[23] |
E. Bonnet, J.C. Grenier, J.M. Bassat, A. Jacob, B. Delatouche, S. Bourdais, J. Eur. Ceram. Soc. 41 (2021) 4505-4515.
DOI URL |
[24] |
D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, J. Mater. Chem. A 4 (2016) 9536-9541.
DOI URL |
[25] |
J. D˛abrowa, J. Cieślak, M. Zajusz, M. Moździerz, K. Berent, A. Mikuła, A. St˛epień, K. Świerczek, J. Eur. Ceram. Soc. 41 (2021) 3844-3849.
DOI URL |
[26] | S.J. Skinner, J.A. Kilner, Mater. Today 6 (2003) 30-37. |
[27] |
M. Pianassola, M. Loveday, J.W. McMurray, M. Koschan, C.L. Melcher, M. Zhu-ravleva, J. Am. Ceram. Soc. 103 (2020) 2908-2918.
DOI URL |
[28] |
A.J. Wright, Q. Wang, C. Huang, A. Nieto, R. Chen, J. Luo, J. Eur. Ceram. Soc. 40 (2020) 2120-2129.
DOI URL |
[29] |
R.D. Shannon, Acta Cryst. A 32 (1976) 751-767.
DOI URL |
[30] |
B. Toby, J. Appl. Crystallogr. 34 (2001) 210-213.
DOI URL |
[31] | C. Artini, M. Pani, M.M. Carnasciali, M.T. Buscaglia, J.R. Plaisier, G.A. Costa, In-org. Chem. 54 (2015) 4126-4137. |
[32] | L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Accardo, D. Frattini, G. Dell’Agli, Materi-als 13 (2020) 558-12. |
[33] |
H. Chen, Z. Zhao, H. Xiang, F.-Z. Dai, J. Zhang, S. Wang, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 38 (2020) 80-85.
DOI |
[34] |
A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43 (1991) 3161.
DOI PMID |
[35] |
A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, S.S. Bhattacharya, J. Eur. Ceram. Soc. 37 (2017) 747-754.
DOI URL |
[36] |
A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Yu, S. Ran, J. Magn. Magn. Mater. 484 (2019) 245-252.
DOI URL |
[37] |
P. Zhang, X. Liu, A. Cai, Q. Du, X. Yuan, H. Wang, Y. Wu, S. Jiang, Z. Lu, Sci. China Mater. 64 (2021) 2037-2044.
DOI URL |
[38] |
A. Sarkar, B. Eggert, L. Velasco, X. Mu, J. Lill, K. Ollefs, S.S. Bhattacharya, H. Wende, R. Kruk, R.A. Brand, H. Hahn, Apl. Mater. 8 (2020) 051111.
DOI URL |
[39] |
A. Filtschew, K. Hofmann, C. Hess, J. Phys. Chem. C 120 (2016) 6694-6703.
DOI URL |
[40] |
Talip Zeynep, Wiss Thierry, E. Philippe, Jérôme Raison, Dario Paillier, J. Am. Ceram. Soc. 98 (2015) 2278-2285.
DOI URL |
[41] |
A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya, H. Hahn, R. Dje-nadic, Dalton T. 46 (2017) 12167-12176.
DOI URL |
[42] |
M. Guo, J. Lu, Y. Wu, Y. Wang, M. Luo, Langmuir 27 (2011) 3872-3877.
DOI URL |
[43] |
R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V.S.K. Chakravadhanula, C. Kübel, S.S. Bhattacharya, A.S. Gandhi, H. Hahn, Mater. Res. Lett. 5 (2016) 102-109.
DOI URL |
[44] |
M. Anandkumar, A. Lathe, A.M. Palve, A.S. Deshpande, J. Alloys Compd. 850 (2021) 156716.
DOI URL |
[45] |
F. Zhang, M. Guo, Y. Miao, F. Gao, C. Cheng, F. Cheng, Y. Liu, J. Inorg. Mater. 36 (2021) 372-378.
DOI URL |
[46] |
Y. Fan, Z. Wang, Y. Huan, T. Wei, X. Wang, J. Adv. Ceram. 9 (2020) 349-359.
DOI URL |
[47] |
S. Kazlauskas, E. Kazakevičius, A. Kežionis, Solid State Ionics 310 (2017) 143-147.
DOI URL |
[48] |
M. Stygar, J. D˛abrowa, M. Moździerz, M. Zajusz, W. Skubida, K. Mroczka, K. Berent, K. Świerczek, M. Danielewski, J. Eur. Ceram. Soc. 40 (2020) 1644-1650.
DOI URL |
[49] | M. Balcerzak, K. Kawamura, R. Bobrowski, P. Rutkowski, T. Brylewski, J. Elec- tron. Mater. 48 (2019) 7105-7113. |
[50] |
A. Nakamura, J.B. Wagner, J. Electrochem. Soc. 133 (1986) 1542-1548.
DOI URL |
[51] |
J. Ramírez-González, A.R. West, J. Eur. Ceram. Soc. 40 (2020) 5602-5611.
DOI URL |
[52] |
D.B. Miracle, O.N. Senkov, Acta Mater 122 (2017) 448-511.
DOI URL |
[53] |
L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Dell’Agli, Acta Mater 202 (2021) 181-189.
DOI URL |
[54] |
S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, Scripta Mater 142 (2018) 116-120.
DOI URL |
[55] |
K. Chen, J. Ma, C. Tan, C. Li, L. An, Ceram. Int. 47 (2021) 21207-21211.
DOI URL |
[1] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
[2] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[3] | Xinlu Zhang, Lu Han, Junfeng Li, Ting Lu, Jinliang Li, Guang Zhu, Likun Pan. A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage [J]. J. Mater. Sci. Technol., 2022, 97(0): 156-164. |
[4] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[5] | Jun Guo, Yu-Ke Zhu, Lin Chen, Zi-Yuan Wang, Zhen-Hua Ge, Jing Feng. High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process [J]. J. Mater. Sci. Technol., 2022, 100(0): 51-58. |
[6] | Longkang Cong, Wei Li, Jiancheng Wang, Shengyue Gu, Shouyang zhang. High-entropy (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 ceramic: A promising thermal barrier coating material [J]. J. Mater. Sci. Technol., 2022, 101(0): 199-204. |
[7] | Xiao-Tao Luo, Yi Ge, Yingchun Xie, Yingkang Wei, Renzhong Huang, Ninshu Ma, Chidambaram Seshadri Ramachandran, Chang-Jiu Li. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content [J]. J. Mater. Sci. Technol., 2021, 67(0): 105-115. |
[8] | Haiming Zhang, Biao Zhao, Fu-Zhi Dai, Huimin Xiang, Zhili Zhang, Yanchun Zhou. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band [J]. J. Mater. Sci. Technol., 2021, 77(0): 58-65. |
[9] | Xiong Yang, Daquan Liu, Jianbo Li, Ruonan Min, Huijun Kang, Linwei Li, Zongning Chen, Enyu Guo, Tongmin Wang. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 39-45. |
[10] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[11] | Longkang Cong, Shouyang Zhang, Shengyue Gu, Wei Li. Thermophysical properties of a novel high entropy hafnate ceramic [J]. J. Mater. Sci. Technol., 2021, 85(0): 152-157. |
[12] | C. Guillén, J. Herrero. Amorphous WO3-x thin films with color characteristics tuned by the oxygen vacancies created during reactive DC sputtering [J]. J. Mater. Sci. Technol., 2021, 78(0): 223-228. |
[13] | Huaicheng Xiang, Lei Yao, Junqi Chen, Aihong Yang, Haitao Yang, Liang Fang. Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies [J]. J. Mater. Sci. Technol., 2021, 93(0): 28-32. |
[14] | J.S. Cha, D.H. Kim, H.Y. Hong, K. Park. Enhanced thermoelectric performance of spark plasma sintered p-type Ca3-xYxCo4O9+δ systems [J]. J. Mater. Sci. Technol., 2020, 55(0): 212-222. |
[15] | Z.Y. Zhang, L.X. Sun, N.R. Tao. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48(0): 18-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||