J. Mater. Sci. Technol. ›› 2022, Vol. 100: 150-160.DOI: 10.1016/j.jmst.2021.06.007
• Research Article • Previous Articles Next Articles
Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu*(), Qimin Wang*(
)
Received:
2021-02-20
Revised:
2021-05-25
Accepted:
2021-06-04
Published:
2022-02-20
Online:
2022-02-15
Contact:
Yu X. Xu,Qimin Wang
About author:
qmwang@gdut.edu.cn (Q. Wang).Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique[J]. J. Mater. Sci. Technol., 2022, 100: 150-160.
Coating | PCu, kW | Elemental concentration, at.% | Al/(Al+Cr) | |||
---|---|---|---|---|---|---|
Al | Cr | Cu | N | |||
AlCrN | 0 | 27.7 | 24.5 | N/A | 47.8 | 0.53 |
AlCrN/Cu | 0.3 | 26.7 | 23.5 | 2.6 | 47.2 | 0.53 |
0.5 | 25.4 | 22.0 | 7.9 | 44.7 | 0.53 | |
0.7 | 22.9 | 19.9 | 13.8 | 43.4 | 0.54 |
Table 1 Chemical compositions analyzed by EDS of AlCrN and AlCrN/Cu coatings deposited in different PCu.
Coating | PCu, kW | Elemental concentration, at.% | Al/(Al+Cr) | |||
---|---|---|---|---|---|---|
Al | Cr | Cu | N | |||
AlCrN | 0 | 27.7 | 24.5 | N/A | 47.8 | 0.53 |
AlCrN/Cu | 0.3 | 26.7 | 23.5 | 2.6 | 47.2 | 0.53 |
0.5 | 25.4 | 22.0 | 7.9 | 44.7 | 0.53 | |
0.7 | 22.9 | 19.9 | 13.8 | 43.4 | 0.54 |
Fig. 5. (a) Cross sectional TEM bright-field image and (b) SAED pattern of the AlCrN/Cu coating with PCu = 0.3 kW; (c) STEM-HADDF image indicating distinct nano-multilayer structure, consisting of AlCrN and Cu sublayers; (d) high-resolution TEM micrograph for two adjacent columnar grains in this coating.
Fig. 6. (a and b) TEM bright-field image of AlCrN/Cu with PCu = 0.7 kW showing fine-grain morphology; (c) SAED pattern of the polycrystalline coating; (d) STEM HADDF image and EDS compositional mapping around the film-substrate interface.
Fig. 7. (a) High-resolution TEM micrograph of AlCrN/Cu with PCu = 0.7 kW; (b) FFT pattern from the marked area in (a); (c) Enlarged HRTEM image focusing on a Cu grain.
Fig. 9. SEM surface micrographs of (a) AlCrN and (b to d) AlCrN/Cu coatings with PCu of (b) 0.3 kW, (c) 0.5 kW, and (d) 0.7 kW in the as-deposited state and after oxidation at various temperatures for 30 min.
Fig. 10. GIXRD patterns of AlCrN/Cu coatings deposited with PCu of (a) 0.3, (b) 0.5, and (c) 0.7 kW on cemented carbide after oxidation at 700, 800, and 900 °C.
Coating | PCu, kW | Surface roughness, nm | |||
---|---|---|---|---|---|
As-deposited | 700 °C oxidized | 800 °C oxidized | 900 °C oxidized | ||
AlCrN | 0 | 121 ± 4 | 129 ± 5 | 127 ± 4 | 139 ± 8 |
AlCrN/Cu | 0.3 | 121 ± 5 | 128 ± 3 | 116 ± 3 | 143 ± 2 |
0.5 | 111 ± 2 | 118 ± 4 | 116 ± 6 | 151 ± 3 | |
0.7 | 146 ± 3 | 135 ± 2 | 232 ± 3 | 187 ± 5 |
Table 2 Surface roughness of as-deposited and oxidized AlCrN/Cu coatings with different PCu.
Coating | PCu, kW | Surface roughness, nm | |||
---|---|---|---|---|---|
As-deposited | 700 °C oxidized | 800 °C oxidized | 900 °C oxidized | ||
AlCrN | 0 | 121 ± 4 | 129 ± 5 | 127 ± 4 | 139 ± 8 |
AlCrN/Cu | 0.3 | 121 ± 5 | 128 ± 3 | 116 ± 3 | 143 ± 2 |
0.5 | 111 ± 2 | 118 ± 4 | 116 ± 6 | 151 ± 3 | |
0.7 | 146 ± 3 | 135 ± 2 | 232 ± 3 | 187 ± 5 |
Fig. 15. SEM cross sections of wear track for (a and b) 800 and (c and d) 900 °C oxidized AlCrN/Cu coatings with PCu of (a and c) 0.5 and (b and d) 0.7 kW.
[1] |
G.S. Fox-Rabinovich, J.L. Endrino, B.D. Beake, A.I. Kovalev, S.C. Veldhuis, L. Ning, F. Fontaine, A. Gray, Surf. Coat. Technol. 201 (6) (2006) 3524-3529, doi: 10.1016/j.surfcoat.2006.08.075.
DOI URL |
[2] |
X.Z. Ding, X.T. Zeng, Y.C. Liu, F.Z. Fang, G.C. Lim, Thin Solid Films 516 (8) (2008) 1710-1715, doi: 10.1016/j.tsf.2007.05.019.
DOI URL |
[3] |
J.L. Endrino, G.S. Fox-Rabinovich, C. Gey, H. AlTiN, Surf. Coat. Technol. 200 (24)(2006) 6840-6845, doi: 10.1016/j.surfcoat.2005.10.030.
DOI URL |
[4] |
J.L. Mo, M.H. Zhu, B. Lei, Y.X. Leng, N. Huang, Wear 263 (7-12) (2007) 1423-1429, doi: 10.1016/j.wear.2007.01.051.
DOI URL |
[5] |
Y.X. Xu, C. Hu, L. Chen, F. Pei, Y. Du, Ceram. Int. 44 (6) (2018) 7013-7019, doi: 10.1016/j.ceramint.2018.01.135.
DOI URL |
[6] |
R.E. Galindo, J.L. Endrino, R. Martínez, J.M. Albella, Spectrochim. Acta Part B 65 (11) (2010) 950-958, doi: 10.1016/j.sab.2010.09.005.
DOI URL |
[7] |
M. Zhu, M. Li, Y. Zhou, Surf. Coat. Technol. 201 (6) (2006) 2878-2886, doi: 10.1016/j.surfcoat.2006.05.045.
DOI URL |
[8] |
R. Franz, J. Neidhardt, B. Sartory, R. Kaindl, R. Tessadri, P. Polcik, V.H. Der- flinger, C. Mitterer, Tribol. Lett. 23 (2) (2006) 101-107, doi: 10.1007/s11249-006-9064-1.
DOI URL |
[9] |
N.A. Abukhshim, P.T. Mativenga, M.A. Sheikh, Int. J. Mach. Tools Manuf. 46 (7- 8) (2006) 782-800, doi: 10.1016/j.ijmachtools.2005.07.024.
DOI URL |
[10] |
C. Mitterer, A.A. Voevodin, C. Muratore, S.M. Aouadi, Surf. Coat. Technol. 257 (2014) 247-265, doi: 10.1016/j.surfcoat.2014.04.046.
DOI URL |
[11] |
R. Franz, J. Neidhardt, R. Kaindl, B. Sartory, R. Tessadri, M. Lechthaler, P. Pol- cik, C. Mitterer, Surf. Coat. Technol. 203 (8) (2009) 1101-1105, doi: 10.1016/j.surfcoat.2008.10.003.
DOI URL |
[12] |
S.M. Aouadi, B. Luster, P. Kohli, C. Muratore, A.A. Voevodin, Surf. Coat. Technol. 204 (6-7) (2009) 962-968, doi: 10.1016/j.surfcoat.2009.04.010.
DOI URL |
[13] |
Z.R. Liu, B. Peng, Y.X. Xu, Q. Zhang, Q. Wang, L. Chen, Ceram. Int. 45 (3) (2019) 3735-3742, doi: 10.1016/j.ceramint.2018.11.039.
DOI URL |
[14] |
F. Ma, J. Li, Z. Zeng, Y. Gao, J. Mater. Sci. Technol. 35 (3) (2019) 448-459, doi: 10.1016/j.jmst.2018.09.038.
DOI |
[15] |
P. Ren, K. Zhang, X. He, S. Du, X. Yang, T. An, M. Wen, W. Zheng, Acta Mater. 137 (2017) 1-11, doi: 10.1016/j.actamat.2017.07.034.
DOI URL |
[16] |
M. Jirout, J. Musil, Surf. Coat. Technol. 200 (24) (2006) 6792-6800, doi: 10.1016/j.surfcoat.2005.10.022.
DOI URL |
[17] |
J. Musil, Surf. Coat. Technol. 207 (2012) 50-65, doi: 10.1016/j.surfcoat.2012.05.073.
DOI URL |
[18] |
L. Chen, Z. Pei, J. Xiao, J. Gong, C. Sun, J. Mater. Sci. Technol. 33 (1) (2017) 111-116, doi: 10.1016/j.jmst.2016.07.018.
DOI |
[19] |
H. Mei, D. Geng, R. Wang, L. Cheng, J.C. Ding, Q. Luo, T.F. Zhang, Q. Wang, Surf. Coat. Technol. 402 (2020) 126490, doi: 10.1016/j.surfcoat.2020.126490.
DOI URL |
[20] |
Y.J. Zhang, Y.G. Qin, Y.A. Qing, R.P. Deng, H. Jin, R.Y. Li, J. Rehman, M. Wen, K. Zhang, Mater. Lett. 227 (2018) 145-148, doi: 10.1016/j.matlet.2018.05.061.
DOI URL |
[21] |
P.J. Kelly, H. Li, P.S. Benson, K.A. Whitehead, J. Verran, R.D. Arnell, I. Iordanova, Surf. Coat. Technol. 205 (5) (2010) 1606-1610, doi: 10.1016/j.surfcoat.2010.07.029.
DOI URL |
[22] |
H. Ju, N. Ding, J. Xu, L. Yu, Y. Geng, G. Yi, T. Wei, Vacuum 158 (2018) 1-5, doi: 10.1016/j.vacuum.2018.09.037.
DOI URL |
[23] |
Z.G. Li, S. Miyake, M. Kumagai, H. Saito, Y. Muramatsu, Surf. Coat. Technol. 183 (1) (2004) 62-68, doi: 10.1016/j.surfcoat.2003.09.051.
DOI URL |
[24] |
L. Yu, H. Zhao, H. Ju, J. Xu, Thin Solid Films 624 (2017) 144-151, doi: 10.1016/j.tsf.2017.01.030.
DOI URL |
[25] |
A. Inspektor, P.A. Salvador, Surf. Coat. Technol. 257 (2014) 138-153, doi: 10.1016/j.surfcoat.2014.08.068.
DOI URL |
[26] |
J. Shuai, X. Zuo, Z. Wang, L. Sun, R. Chen, L. Wang, A. Wang, P. Ke, J. Mater. Sci. Technol. 80 (2021) 179-190, doi: 10.1016/j.jmst.2021.01.001.
DOI URL |
[27] |
J. Buchinger, A. Wagner, Z. Chen, Z.L. Zhang, D. Holec, P.H. Mayrhofer, M. Bar- tosik, Acta Mater. 202 (2021) 376-386, doi: 10.1016/j.actamat.2020.10.068.
DOI URL |
[28] |
Q. Zhang, Y. Xu, T. Zhang, Z. Wu, Q. Wang, Surf. Coat. Technol. 356 (2018) 1-10, doi: 10.1016/j.surfcoat.2018.09.027.
DOI URL |
[29] |
K. Yalamanchili, F. Wang, H. Aboulfadl, J. Barrirero, L. Rogström, E. Jiménez-Pique, F. Mücklich, F. Tasnadi, M. Odén, N. Ghafoor, Acta Mater. 121 (2016) 396-406, doi: 10.1016/j.actamat.2016.07.006.
DOI URL |
[30] |
Y.X. Xu, L. Chen, Z.Q. Liu, F. Pei, Y. Du, Surf. Coat. Technol. 321 (2017) 180-185, doi: 10.1016/j.surfcoat.2017.04.057.
DOI URL |
[31] |
G.S. Fox-Rabinovich, K. Yamamoto, M.H. Aguirre, D.G. Cahill, S.C. Veldhuis, A. Biksa, G. Dosbaeva, L.S. Shuster, Surf. Coat. Technol. 204 (15) (2010) 2465-2471, doi: 10.1016/j.surfcoat.2010.01.024.
DOI URL |
[32] |
G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, Tribol. Lett. 17 (4) (2004) 751-756, doi: 10.1007/s11249-004-8083-z.
DOI URL |
[33] |
J. Cheng, S. Zhu, Y. Yu, J. Yang, W. Liu, J. Mater. Sci. Technol. 34 (4) (2018) 670-678, doi: 10.1016/j.jmst.2017.09.007.
DOI |
[34] |
S.M. Aouadi, D.P. Singh, D.S. Stone, K. Polychronopoulou, F. Nahif, C. Rebholz, C. Muratore, A.A. Voevodin, Acta Mater. 58 (16) (2010) 5326-5331, doi: 10.1016/j.actamat.2010.06.006.
DOI URL |
[35] |
N. Fateh, G.A. Fontalvo, G. Gassner, C. Mitterer, Wear 262 (9) (2007) 1152-1158, doi: 10.1016/j.wear.2006.11.006.
DOI URL |
[36] |
Z. Zhou, W.M. Rainforth, Q. Luo, P.E. Hovsepian, J.J. Ojeda, M.E. Romero-Gonzalez, Acta Mater. 58 (8) (2010) 2912-2925, doi: 10.1016/j.actamat.2010.01.020.
DOI URL |
[37] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (6) (2011) 1564-1583, doi: 10.1557/jmr.1992.1564.
DOI URL |
[38] |
H.S. Myung, H.M. Lee, L.R. Shaginyan, J.G. Han, Surf. Coat. Technol. 163-164 (2003) 591-596, doi: 10.1016/S0257-8972(02)00627-8.
DOI URL |
[39] |
P. Zeman, R. Cerstvý, P.H. Mayrhofer, C. Mitterer, J. Musil, Mater. Sci. Eng. A 289 (1) (2000) 189-197, doi: 10.1016/S0921-5093(00)00917-5.
DOI URL |
[40] |
H. Wu, X. Zhang, X. He, M. Li, X. Huang, R. Hang, B. Tang, Appl. Surf. Sci. 317 (2014) 614-621, doi: 10.1016/j.apsusc.2014.08.163.
DOI URL |
[41] |
G. Johansson, J. Hedman, A. Berndtsson, M. Klasson, R. Nilsson, J. Electron Spectrosc. Relat. Phenom. 2 (3) (1973) 295-317, doi: 10.1016/0368-2048(73)80022-2.
DOI URL |
[42] |
J.G. Jolley, G.G. Geesey, M.R. Hankins, R.B. Wright, P.L. Wichlacz, Appl. Surf. Sci. 37 (4) (1989) 469-480, doi: 10.1016/0169-4332(89)90505-9.
DOI URL |
[43] |
I. Bertóti, Surf. Coat. Technol. 151-152 (2002) 194-203, doi: 10.1016/S0257-8972(01)01619-X.
DOI URL |
[44] |
L. Cunha, M. Andritschky, L. Rebouta, K. Pischow, Surf. Coat. Technol. 116-119 (1999) 1152-1160, doi: 10.1016/S0257-8972(99)00270-4.
DOI URL |
[45] |
S.A. Barnett, A. Madan, I. Kim, K. Martin, MRS Bull. 28 (3) (2003) 169-172, doi: 10.1557/mrs2003.57.
DOI URL |
[46] |
Y.X. Xu, L. Chen, F. Pei, K.K. Chang, Y. Du, Acta Mater. 130 (2017) 281-288, doi: 10.1016/j.actamat.2017.03.053.
DOI URL |
[47] |
M. Yu, G. Wang, R. Zhao, E. Liu, T. Chen, J. Mater. Sci. Technol. 37 (2020) 123-127, doi: 10.1016/j.jmst.2019.06.019.
DOI URL |
[48] |
P. Ren, K. Zhang, M. Wen, S. Du, J. Chen, W. Zheng, Appl. Surf. Sci. 445 (2018) 415-423, doi: 10.1016/j.apsusc.2018.03.202.
DOI URL |
[49] |
Y.Y. Tse, D. Babonneau, A. Michel, G. Abadias, Surf. Coat. Technol. 180-181 (2004) 470-477, doi: 10.1016/j.surfcoat.2003.10.139.
DOI URL |
[50] |
J. Koehler, Phys. Rev. B 2 (2) (1970) 547, doi: 10.1103/PhysRevB.2.547.
DOI URL |
[51] |
P.M. Anderson, C. Li, Nanostruct. Mater. 5 (3) (1995) 349-362, doi: 10.1016/0965-9773(95)00250-I.
DOI URL |
[52] |
H. Li, L. Fu, F. Liu, S. Wang, H. Zhang, New J. Chem. 26 (6) (2002) 674-676, doi: 10.1039/B201436J.
DOI URL |
[53] |
Y.X. Wang, S. Zhang, Surf. Coat. Technol. 258 (2014) 1-16, doi: 10.1016/j.surfcoat.2014.07.007.
DOI URL |
[54] |
J. Musil, M. Jirout, Surf. Coat. Technol. 201 (9) (2007) 5148-5152, doi: 10.1016/j.surfcoat.2006.07.020.
DOI URL |
[55] |
P. Panjan, P. Gselman, D. Kek-Merl, M. Cekada, M. Panjan, G. Dražíc, T. Boncina, F. Zupanic, Surf. Coat. Technol. 237 (2013) 349-356, doi: 10.1016/j.surfcoat.2013.09.020.
DOI URL |
[56] |
L. He, L. Chen, Y. Xu, Y. Du, J. Vac. Sci. Technol. A 33 (6) (2015) 061513, doi: 10.1116/1.4930424.
DOI URL |
[57] |
J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, Surf. Coat. Technol. 202 (14) (2008) 3272-3283, doi: 10.1016/j.surfcoat.2007.11.037.
DOI URL |
[58] |
K.T. Jacob, C.B. Alcock, J. Am. Ceram. Soc. 58 (5-6) (1975) 192-195, doi: 10.1111/j.1151-2916.1975.tb11441.x.
DOI URL |
[59] |
B.J. Kennedy, Q. Zhou, J. Solid State Chem. 181 (9) (2008) 2227-2230, doi: 10.1016/j.jssc.2008.05.018.
DOI URL |
[60] |
P. Harlin, P. Carlsson, U. Bexell, M. Olsson, Surf. Coat. Technol. 201 (7) (2006) 4253-4259, doi: 10.1016/j.surfcoat.2006.08.103.
DOI URL |
[61] |
S. Choudhary, J.V.N. Sarma, S. Pande, S. Ababou-Girard, P. Turban, B. Lepine, S. Gangopadhyay, AIP Adv. 8 (5) (2018) 055114, doi: 10.1063/1.5028407.
DOI URL |
[62] |
L. De Los Santos Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, Y. Majima, Thin Solid Films (20) (2012) 6368-6374, doi: 10.1016/j.tsf.2012.06.043.
DOI |
[63] |
J. Takadoum, H.H. Bennani, Surf. Coat. Technol. 96 (2) (1997) 272-282, doi: 10.1016/S0257-8972(97)00182-5.
DOI URL |
[1] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[2] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[3] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[4] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[5] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[6] | Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples [J]. J. Mater. Sci. Technol., 2022, 96(0): 31-68. |
[7] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[8] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[9] | Renquan Wang, Tingchuan Zhou, Zhiyong Zhong. Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties [J]. J. Mater. Sci. Technol., 2022, 99(0): 1-8. |
[10] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[11] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
[12] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
[13] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[14] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[15] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||