J. Mater. Sci. Technol. ›› 2021, Vol. 93: 147-156.DOI: 10.1016/j.jmst.2021.02.057
• Original article • Previous Articles Next Articles
Yaqun Xua, Yu Fua, Juan Lia, Wenlong Xiaoa,b,*(), Xinqing Zhaoa, Chaoli Maa,b
Accepted:
2020-08-24
Published:
2021-12-10
Online:
2021-12-10
Contact:
Wenlong Xiao
About author:
*E-mail address: wlxiao@buaa.edu.cn (W. Xiao).Yaqun Xu, Yu Fu, Juan Li, Wenlong Xiao, Xinqing Zhao, Chaoli Ma. Effects of tungsten addition on the microstructural stability and properties of Ti-6.5Al-2Sn-4Hf-2Nb-based high temperature titanium alloys[J]. J. Mater. Sci. Technol., 2021, 93: 147-156.
Alloy | Nominal compositions (wt.%) | |||||
---|---|---|---|---|---|---|
Al | Sn | Hf | Nb | W | Ti | |
W0 | 6.5 | 2 | 4 | 2 | 0 | Bal. |
W01 | 6.5 | 2 | 4 | 2 | 0.1 | Bal. |
W05 | 6.5 | 2 | 4 | 2 | 0.5 | Bal. |
W10 | 6.5 | 2 | 4 | 2 | 1.0 | Bal. |
W20 | 6.5 | 2 | 4 | 2 | 2.0 | Bal. |
W40 | 6.5 | 2 | 4 | 2 | 4.0 | Bal. |
Table 1. Nominal compositions of the studied alloys.
Alloy | Nominal compositions (wt.%) | |||||
---|---|---|---|---|---|---|
Al | Sn | Hf | Nb | W | Ti | |
W0 | 6.5 | 2 | 4 | 2 | 0 | Bal. |
W01 | 6.5 | 2 | 4 | 2 | 0.1 | Bal. |
W05 | 6.5 | 2 | 4 | 2 | 0.5 | Bal. |
W10 | 6.5 | 2 | 4 | 2 | 1.0 | Bal. |
W20 | 6.5 | 2 | 4 | 2 | 2.0 | Bal. |
W40 | 6.5 | 2 | 4 | 2 | 4.0 | Bal. |
Alloy | W0 | W01 | W05 | W10 | W20 | W40 |
---|---|---|---|---|---|---|
Kβ | 0.056 | 0.060 | 0.0783 | 0.101 | 0.146 | 0.237 |
Table 2. Kβ stability coefficients of the studied alloys.
Alloy | W0 | W01 | W05 | W10 | W20 | W40 |
---|---|---|---|---|---|---|
Kβ | 0.056 | 0.060 | 0.0783 | 0.101 | 0.146 | 0.237 |
Phase | Chemical composition | |||||
---|---|---|---|---|---|---|
Al | Sn | Hf | Nb | W | Ti | |
Retained β | 3.9 | 1.8 | 5.5 | 1.8 | 34.9 | Bal. |
Secondary β | 4.9 | 1.9 | 5.0 | 2.3 | 14.1 | Bal. |
α lamellae | 7.7 | 2.4 | 3.7 | 3.1 | 0.8 | Bal. |
Table 3. Elemental distribution of β precipitates (wt.%).
Phase | Chemical composition | |||||
---|---|---|---|---|---|---|
Al | Sn | Hf | Nb | W | Ti | |
Retained β | 3.9 | 1.8 | 5.5 | 1.8 | 34.9 | Bal. |
Secondary β | 4.9 | 1.9 | 5.0 | 2.3 | 14.1 | Bal. |
α lamellae | 7.7 | 2.4 | 3.7 | 3.1 | 0.8 | Bal. |
Fig. 6. Dark-filed TEM images and corresponding SAED patterns (inset) showing the precipitation of ordered α2 phase formed in both (a) W0 and (b) W40 alloys.
Fig. 8. STEM images of the (a) W0 and (b) W40 alloys showing the ordered α2 phase. The locations for EDS analysis were highlighted by numbers, where locations 1 and 3 were α phase, and locations 2 and 4 represented α2 phase.
Alloy | Phase | Chemical composition (wt.%) | |||||
---|---|---|---|---|---|---|---|
Al | Sn | Hf | Nb | W | Ti | ||
W0 | α | 5.1 | 4.6 | 4.9 | 0.5 | 0 | Bal. |
α2 | 7.8 | 6.3 | 2.9 | 0.7 | 0 | Bal. | |
W40 | α | 6.8 | 0 | 6.3 | 1.0 | 0.9 | Bal. |
α2 | 8.1 | 0 | 2.0 | 5.1 | 0 | Bal. |
Table 4. Elemental distribution in the α phase and α2 precipitates.
Alloy | Phase | Chemical composition (wt.%) | |||||
---|---|---|---|---|---|---|---|
Al | Sn | Hf | Nb | W | Ti | ||
W0 | α | 5.1 | 4.6 | 4.9 | 0.5 | 0 | Bal. |
α2 | 7.8 | 6.3 | 2.9 | 0.7 | 0 | Bal. | |
W40 | α | 6.8 | 0 | 6.3 | 1.0 | 0.9 | Bal. |
α2 | 8.1 | 0 | 2.0 | 5.1 | 0 | Bal. |
Fig. 9. Variations of mass gain with respect to oxidation time of the W-free and W-containing alloys at 750 °C. The Ti1100 and IMI834 are also included for comparison.
Alloy | n | kp |
---|---|---|
W0 | 1.96 | 11.1 × 10-3 |
W01 | 1.92 | 10.9 × 10-3 |
W05 | 1.59 | 9.6 × 10-3 |
W40 | 2.05 | 3.9 × 10-3 |
Table 5. n and kp values of the studied alloys oxidized at 750 °C.
Alloy | n | kp |
---|---|---|
W0 | 1.96 | 11.1 × 10-3 |
W01 | 1.92 | 10.9 × 10-3 |
W05 | 1.59 | 9.6 × 10-3 |
W40 | 2.05 | 3.9 × 10-3 |
Fig. 13. Compressive mechanical properties at room temperature and 650 °C of the alloys with different W contents before thermal exposure (a) and (b) and after thermal exposure (c) and (d).
[1] | R.R. Boyer, Mater. Sci. Eng. A, 213(1996), pp. 103-114. |
[2] | A.K.J.D.E.J. Gogia, Defence. Sci. J., 55(2005), pp. 149-173. |
[3] | F. Sun, J. Li, H. Kou, B. Tang, J. Cai, Mater. Sci. Eng. A, 626(2015), pp. 247-253. |
[4] | E.W. Collings, W. Gerhard, R.R. Boyer, ASM International Materials Park(1994). |
[5] | V.K. Chandravanshi, A. Bhattacharjee, S.V. Kamat, T.K. Nandy, J. Alloys Compd., 589(2014), pp. 336-345. |
[6] | N. Singh, V.J.M.E.Singh Gouthama, E. A, Mater. Sci. Eng. A, 325(2002), pp. 324-332. |
[7] | A. Gysler, S. Weissmann, Mater. Sci. Eng. A, 27(1977), pp. 181-193. |
[8] | H.J. Wood, G.D.W. Smith, A.C. S, Mater. Sci. Eng. A, 250 (1)(1998), pp. 83-87. |
[9] | B. Jiang, D. Wen, Q. Wang, J. Che, C. Dong, P.K. Liaw, F. Xu, L. Sun, J. Mater. Sci. Technol., 35(2019), pp. 1008-1016. |
[10] | J. Dai, J. Zhu, C. Chen, F. Weng, J. Alloys Compd., 685(2016), pp. 784-798. |
[11] | A. Ebach-Stahl, C. Eilers, N. Laska, R. Braun, Surf. Coat. Technol., 223(2013), pp. 24-31. |
[12] | A. Rahmel, Mater. Corros., 39 (1988), p.354. |
[13] | Z. Zhang, J. Fan, Z. Wu, D. Zhao, Q. Gao, Q. Wang, Z. Chen, B. Tang, H. Kou, J. Li, J. Alloys Compd., 831(2020), Article 154786. |
[14] | J.C. Fisher, Acta Metall, 2(1954), pp. 9-10. |
[15] | S. Patu, R.J. Arsenault, Mater. Sci. Eng. A, 194(1995), pp. 121-128. |
[16] | S.Z. Zhang, H.Z. Xu, G.P. Li, Y.Y. Liu, R. Yang, Mater. Sci. Eng. A, 408(2005), pp. 290-296. |
[17] | A. Radecka, V.A. Vorontsov, J. Coakley, K.M. Rahman, D. Dye, Ordering in α Titanium Alloys, John Wiley & Sons, Inc. (2016). |
[18] | J.C. Williams, A.W. Thompson, R.G. Baggerly, Scr. Mater., 8(1974), pp. 625-630. |
[19] | G. Welsch, G. Lütjering, K. Gazioglu, W. Bunk, Mater. Trans. A, 8(1977), pp. 169-177. |
[20] | J. Li, J. Cai, Y. Xu, W. Xiao, X. Huang, C. Ma, Mater. Sci. Eng. A, 774(2020), Article 138934. |
[21] | Q. Wang, J. Liu, R. Yang, J. Aaero. Mater., 14(2014), pp. 13-14. |
[22] | W. Jia, W. Zeng, J. Liu, Y. Zhou, Q. Wang, Mater. Sci. Eng. A, 530(2011), pp. 511-518. |
[23] | W.L. Xiao, D.H. Ping, Y. Yamabe-Mitarai, J. Mater. Sci., 48(2013), pp. 3363-3369. |
[24] | J.-.Y. Xu, Z.-.Z. Shi, Z.-.B. Zhang, H.-.G. Huang, X.-.F. Liu, Corros. Sci., 166(2020), Article 108430. |
[25] | T. Kitashima, T. Kawamura, Scr. Mater., 124(2016), pp. 56-58. |
[26] | D. Banerjee, J.C. Williams, Acta Mater, 61(2013), pp. 844-879. |
[27] | A.G. Imgram, D.N. Williams, H.R. Ogden, J. Les. Com. Metals, 4(1962), pp. 217-225. |
[28] | J.D.H. Paul, F. Appel, R. Wagner, Acta Mater, 46(1998), pp. 1075-1085. |
[29] | J.M. Cai, M.Y. Hao, X.M. Li, J.M. Ma, C.X. Cao, J. Mater. Eng.(2000), pp. 10-12. |
[30] | W.J. Zhang, X.Y. Song, S.X. Hui, W.J. Ye, Y.L. Wang, W.Q. Wang, Mater. Sci. Eng. A, 595(2014), pp. 159-164. |
[31] | Y.W. Kim, R. Boyer, Microstructure/property relationships in Titanium Aluminides & alloys, Minerals Metals Mater. Soc.(1991), pp. 337-344. |
[32] | Q. Wang, J. Liu, R. Yang, J. Aero. Mater., 34(2014), pp. 1-26. |
[33] | G. Wang, Q. Gao, J. Liu, Q. Yang, F. Zheng, Mate. Review(2017). |
[34] | W. Li, Z. Chen, J. Liu, Q. Wang, G. Sui, Mater. Sci. Eng. A, 688(2017), pp. 322-329. |
[35] | S. Balachandran, A. Kashiwar, A. Choudhury, D. Banerjee, R. Shi, Y. Wang, Acta Mater, 106(2016), pp. 374-387. |
[36] | R. Kolli, D.M. Arun, Metals (Basel), 8 (2018), p.506. |
[37] | P.L. Narayana, S.-.W. Kim, J.-.K. Hong, N.S. Reddy, J.-.T. Yeom, Mater. Sci. Eng. A, 718(2018), pp. 287-291. |
[38] | Q.M. Hu, S.J. Li, Y.L. Hao, R. Yang, B. Johansson, L. Vitos, Appl. Phys. Lett., 93(2008), pp. 58-60. |
[39] | K. Yue, J. Liu, H. Zhang, H. Yu, Y. Song, Q. Hu, Q. Wang, R. Yang, J. Mater. Sci. Technol., 36(2020), pp. 91-96. |
[40] | A.I. Antipov, V.N. Moiseev, Met.Sci. Heat Treatment, 39(1997), pp. 499-503. |
[41] | B. Fu, H. Wang, C. Zou, Z. Wei, Mater. Des., 66(2015), pp. 267-273. |
[42] | H.M. Gardner, A. Radecka, D. Rugg, D.E.J. Armstrong, M.P. Moody, P.A.J. Bagot, Scr. Mater., 185(2020), pp. 111-116. |
[43] | W.F. Cui, H.R. Wei, G.Z. Luo, Q. Hong, L.A. Zhou, Rare Met. Mater. Eng., 26 (2)(1997), pp. 31-35. |
[44] | A. Takasaki, K. Ojima, Y. Taneda, T. Hoshiya, A. Mitsuhashi, J. Mater. Sci., 28(1993), pp. 1067-1073. |
[45] | R. Gaddam, B. Sefer, R. Pederson, Mater. Character., 99(2015), pp. 166-174. |
[46] | A. Brotzu, F. Felli, D. Pilone, Intermetallics, 54(2014), pp. 176-180. |
[47] | Ghonem.H Madsen. A, J. Mater. Eng. Perform., 4 (3)(1995), pp. 301-307. |
[48] | G. Lütjering, S. Weissmann, Acta Mater, 18(1970), pp. 785-795. |
[49] | C. Ramachandra, V. Singh, Scr. Mater., 20 (4)(1986), pp. 509-512. |
[50] | A. Churchman, Pro. R. Soc. A, 226(1954), pp. 216-226 |
[51] | S. Djanarthany, J.C. Viala, J. Bouix, Mater. Chem. Phys., 72(2001), pp. 301-319. |
[52] | W. Zhou, R. Sahara, K. Tsuchiya, J. Alloys Compd., 727(2017), pp. 579-595. |
[53] | R.V. Ramanujan, P.J. Maziasz, C.T. Liu, Acta Mater, 44(1996), pp. 2611-2642. |
[1] | Hailin Yang, Yingying Zhang, Jianying Wang, Zhilin Liu, Chunhui Liu, Shouxun Ji. Additive manufacturing of a high strength Al-5Mg2Si-2Mg alloy: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 91(0): 215-223. |
[2] | Shanlin Ke, Caixia Kan, Xingzhong Zhu, Changshun Wang, Weijian Gao, Zhaosheng Li, Xiaoguang Zhu, Daning Shi. Effective fabrication of porous Au-Ag alloy nanorods for in situ Raman monitoring catalytic oxidation and reduction reactions [J]. J. Mater. Sci. Technol., 2021, 91(0): 262-269. |
[3] | Yi Yang, Bohua Zhang, Zhichao Meng, Lei Qu, Hao Wang, Sheng Cao, Jianan Hu, Hao Chen, Songquan Wu, Dehai Ping, Geping Li, Lai-Chang Zhang, Rui Yang, Aijun Huang. {332}<113> Twinning transfer behavior and its effect on the twin shape in a beta-type Ti-23.1Nb-2.0Zr-1.0O alloy [J]. J. Mater. Sci. Technol., 2021, 91(0): 58-66. |
[4] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[5] | Hongge Li, Yongjiang Huang, Jianfei Sun, Yunzhuo Lu. The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 187-195. |
[6] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
[7] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[8] | Haiming Zhang, Biao Zhao, Fu-Zhi Dai, Huimin Xiang, Zhili Zhang, Yanchun Zhou. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band [J]. J. Mater. Sci. Technol., 2021, 77(0): 58-65. |
[9] | Jianxiong Li, Anupam Vivek, Glenn Daehn. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer [J]. J. Mater. Sci. Technol., 2021, 79(0): 191-204. |
[10] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[11] | Cean Guo, Feng Zhou, Minghui Chen, Jinlong Wang, Shenglong Zhu, Fuhui Wang. An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 1-11. |
[12] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[13] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[14] | Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70(0): 136-144. |
[15] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||