J. Mater. Sci. Technol. ›› 2021, Vol. 90: 133-142.DOI: 10.1016/j.jmst.2021.03.007
• Research Article • Previous Articles Next Articles
Duo Xua, Tianyu Wanga, Zhiyuan Lua, Yuanqi Wangb, Bin Sunc, Shudan Wangd, Qiang Fue, Zhenggang Bia,*(
), Shuo Genga,*(
)
Received:2020-09-20
Revised:2021-01-31
Accepted:2021-03-07
Published:2021-11-05
Online:2021-11-05
Contact:
Zhenggang Bi,Shuo Geng
About author:shuogeng@hrbmu.edu.cn (S. Geng).1 These authors contribute equally to this work.
Duo Xu, Tianyu Wang, Zhiyuan Lu, Yuanqi Wang, Bin Sun, Shudan Wang, Qiang Fu, Zhenggang Bi, Shuo Geng. Ti-6Al-4V-5Cu synthesized for antibacterial effect in vitro and in vivo via contact sterilization[J]. J. Mater. Sci. Technol., 2021, 90: 133-142.
| Element | Al | V | Cu | Fe | Ti |
|---|---|---|---|---|---|
| Ti-6Al-4V | 5.97 | 4.09 | 0.01 | 0.03 | Balance |
| Ti-6Al-4V-5Cu | 6.05 | 3.88 | 4.86 | 0.06 | Balance |
Table 1 Chemical composition of pure Ti and Ti-6Al-4V-5Cu (wt%).
| Element | Al | V | Cu | Fe | Ti |
|---|---|---|---|---|---|
| Ti-6Al-4V | 5.97 | 4.09 | 0.01 | 0.03 | Balance |
| Ti-6Al-4V-5Cu | 6.05 | 3.88 | 4.86 | 0.06 | Balance |
Fig. 2. Characterization and biocompatibility assay. (a,b) HAADF-STEM images of (a) 850S and (b) 950S; scale bars, 200 nm. (c) The absorbance at 450 nm for the viability of MC3T3-E1 cells attached to the sample surface after 1, 4 and 7 days of culture. (d) The absorbance at 405 nm for ALP activity of MC3T3-E1 cells attached to the sample surface after 7 and 14 days of culture. (e) Western blotting bands of the expression of a series of vital osteogenesis-related proteins, including ALP, BMP-2, COL-1, OCN and OPN. (f) The concentration of copper ions released from 850S and 950S after 7, 14, 21 and 28 days of culture. (g) XRD patterns of 850S and 950S. *p < 0.05.
| Phase | Ti | Cu | Al | V | |
|---|---|---|---|---|---|
| Point 1 | Ti2Cu | 66.97 | 32.19 | 0.84 | 0 |
| Point 2 | Ti2Cu | 71.85 | 24.44 | 2.6 | 1.11 |
Table 2 Composition of different phases in 850S and 950S samples (wt%).
| Phase | Ti | Cu | Al | V | |
|---|---|---|---|---|---|
| Point 1 | Ti2Cu | 66.97 | 32.19 | 0.84 | 0 |
| Point 2 | Ti2Cu | 71.85 | 24.44 | 2.6 | 1.11 |
Fig. 3. Electrochemical test. (a) Open circuit potential of all the groups. (b) Bode phase diagrams. (c) Bode plot diagrams. (d) Nyquist plot diagrams.
Fig. 4. Bacterial colony-counting assay. (a) Images of S. aureus colonies for TC4, 850S and 950S grown on LB agar for 24 h. (b) Images of E. coli colonies for TC4, 850S and 950S were obtained and cultured under the above conditions. (c, d) Antibacterial rate of 850S and 950S against (c) S. aureus and (d) E. coli. *p < 0.05, ***p < 0.001.
Fig. 5. Bacterial viability assay. (a, b) Live/Dead fluorescent images of (a) S. aureus and (b) E. coli after dripping on the sample surface and coculturing for 24 h. Green label represents live bacteria, and red label represents dead bacteria. Scale bars, 100 μm.
Fig. 6. Radiological results after implantation. (a) X-ray radiographs were obtained at 1, 2, 4 and 6 weeks postoperatively to obtain a kinetic estimation of the level of osteomyelitis. (b) Anterior and lateral views of the micro-CT 3D reconstruction of each implant and cortical bone 6 weeks after surgery. The red area represents cortical bone, and the silver area represents the implant. (c) BV/TV for TC4, 850S and 950S. *p < 0.05.
Fig. 7. Histological results. (a) MB-AF staining in the TC4, 850S and 950S groups at 6 weeks postoperatively under low and high magnification. The red rectangle indicates cortical bone, the yellow rectangle indicates osteomyelitis, and the magnifications are shown beneath. Scale bars: upper, 500 µm; lower, 50 µm. (b) H&E staining in the TC4, 850S and 950S groups. The red rectangle indicates typical inflammatory cell aggregation, and the magnifications are shown beneath. Scale bars: upper, 100 µm; lower, 40 µm.
| [1] |
S.D. Puckett, E. Taylor, T. Raimondo, T.J. Webster, Biomaterials 31 (2010) 706-713.
DOI URL |
| [2] |
S. Ferraris, A. Venturello, M. Miola, A. Cochis, L. Rimondini, S. Spriano, Appl. Surf. Sci. 311 (2014) 279-291.
DOI URL |
| [3] | C.H. Yan, C.R. Arciola, A. Soriano, L.S. Levin, T.W. Bauer, J. Parvizi, JBJS Reviews 6 (2018) e9. |
| [4] |
B.H. Kapadia, S. Banerjee, J.J. Cherian, K.J. Bozic, M.A. Mont, J. Arthroplast. 31 (2016) 1422-1426.
DOI URL |
| [5] |
S. Ferraris, S. Spriano, Mater. Sci. Eng. C 61 (2016) 965-978.
DOI URL |
| [6] |
L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu, P.K. Chu, Biomaterials 32 (2011) 5706-5716.
DOI URL |
| [7] |
P.S. Stewart, T. Bjarnsholt, Clin. Microbiol. Infect. 26 (8) (2020) 1034-1038.
DOI URL |
| [8] |
D. Campoccia, L. Montanaro, C.R. Arciola, Biomaterials 34 (2013) 8018-8029.
DOI PMID |
| [9] |
Y. Zhang, X. Wang, Z. Ma, B. Bai, J. Liu, L. Yang, G. Qin, E. Zhang, Mater. Sci. Eng. C 115 (2020) 111090.
DOI URL |
| [10] |
X. Tong, Z. Shi, L. Xu, J. Lin, D. Zhang, K. Wang, Y. Li, C. Wen, Acta Biomater. 102 (2020) 4 81-4 92.
DOI URL |
| [11] |
Z. Zhang, G. Zheng, H. Li, L. Yang, X. Wang, G. Qin, E. Zhang, Mater. Sci. Eng. C 94 (2019) 376-384.
DOI URL |
| [12] |
S. Moniri Javadhesari, S. Alipour, M.R. Akbarpour, Coll. Surf. B Biointerfaces 189 (2020) 110889.
DOI URL |
| [13] |
L. Fowler, O. Janson, H. Engqvist, S. Norgren, C. Öhman-Mägi, Mater. Sci. Eng. C Mater.Biol. Appl. 97 (2019) 707-714.
DOI URL |
| [14] |
E. Zhang, F. Li, H. Wang, J. Liu, C. Wang, M. Li, K. Yang, Mater. Sci. Eng. C 33 (2013) 4280-4287.
DOI URL |
| [15] |
L.C. Carvalho do Lago, A.C. Matias, C.S. Nomura, G. Cerchiaro, J. Inorg. Biochem. 105 (2011) 189-194.
DOI PMID |
| [16] |
J.Y. Uriu-Adams, C.L. Keen, Mol. Aspects. Med. 26 (2005) 268-298.
PMID |
| [17] |
J. Wang, S. Zhang, Z. Sun, H. Wang, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (2019) 2336-2344.
DOI URL |
| [18] |
L. Ren, Z. Ma, M. Li, Y. Zhang, W. Liu, Z. Liao, K. Yang, J. Mater. Sci. Technol. 30 (2014) 699-705.
DOI URL |
| [19] |
J. Liu, X. Zhang, H. Wang, F. Li, M. Li, K. Yang, E. Zhang, Biomed. Mater. 9 (2014) 025013.
DOI URL |
| [20] |
R. Liu, K. Memarzadeh, B. Chang, Y. Zhang, Z. Ma, R.P. Allaker, L. Ren, K. Yang, Sci. Rep. 6 (2016) 29985.
DOI URL |
| [21] | L. Fowler, H. Engqvist, C. Öhman-Mägi, Mater. 12 (2019) 3798 Basel. |
| [22] |
K. Li, C. Xia, Y. Qiao, X. Liu, J. Trace Elements Med. Biol. 55 (2019) 127-135.
DOI URL |
| [23] |
R.O. Darouiche, N. Engl. J. Med. 350 (2004) 1422-1429.
DOI URL |
| [24] | C.R. Arciola, D. Campoccia, P. Speziale, L. Montanaro, J.W. Costerton, Biomate- rials 33 (2012) 5967-5982. |
| [25] |
S. Moniri Javadhesari, S. Alipour, S. Mohammadnejad, M.R. Akbarpour, Mater. Sci. Eng. C 105 (2019) 110011.
DOI URL |
| [26] |
E. Zhang, S. Li, J. Ren, L. Zhang, Y. Han, Mater. Sci. Eng. C 69 (2016) 760-768.
DOI URL |
| [27] |
Z. Ma, L. Ren, R. Liu, K. Yang, Y. Zhang, Z. Liao, W. Liu, M. Qi, R.D.K. Misra,J.Mater. Sci. Technol. 31 (2015) 723-732.
DOI URL |
| [28] |
C. Peng, Y. Liu, H. Liu, S. Zhang, C. Bai, Y. Wan, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (2019) 2121-2131.
DOI |
| [29] | C. Peng, S. Zhang, Z. Sun, L. Ren, K. Yang, Mater. Scie. Eng. C 93 (2018) 495-504. |
| [30] |
D.P. Lew, F.A. Waldvogel, Lancet 364 (2004) 369-379.
DOI URL |
| [31] |
A. Hogan, V.G. Heppert, A.J. Suda, Arch Orthop. Trauma. Surg. 133 (2013) 1183-1196.
DOI URL |
| [32] |
G. Jin, H. Qin, H. Cao, Y. Qiao, Y. Zhao, X. Peng, X. Zhang, X. Liu, P.K. Chu, Biomaterials 65 (2015) 22-31.
DOI URL |
| [33] |
Y.H. An, R.J. Friedman, J. Invest. Surg. 11 (1998) 139-146.
PMID |
| [34] |
K. Gupta, A.D. Kale, S.R. Hallikeremath, V.S. Kotrashetti, Biotech. Histochem. 87 (2012) 249-256.
DOI PMID |
| [35] |
V. Alt, K. Kirchhof, F. Seim, I. Hrubesch, K.S. Lips, H. Mannel, E. Domann, R. Schnettler, Acta Biomater 10 (2014) 4518-4524.
DOI URL |
| [36] | L.L. Hench, I. Thompson, J. R. Soc. Interface 7 (2010) S379-S391. |
| [37] |
K. Wang, Mater. Sci. Eng. A 213 (1996) 134-137.
DOI URL |
| [38] |
W.R. Osório, A. Cremasco, P.N. Andrade, A. Garcia, R. Caram, Electrochim. Acta 55 (2010) 759-770.
DOI URL |
| [39] |
E. Zhang, X. Wang, M. Chen, B. Hou, Mater. Sci. Eng. C 69 (2016) 1210-1221.
DOI URL |
| [40] |
X. Zhang, C. Yang, K. Yang, ACS Appl. Mater. Interfaces 12 (2020) 361-372.
DOI URL |
| [41] |
H. Cao, Y. Qiao, X. Liu, T. Lu, T. Cui, F. Meng, P.K. Chu, Acta Biomater 9 (2013) 5100-5110.
DOI URL |
| [42] |
D.P. Lew, F.A. Waldvogel, N. Engl. J. Med. 336 (1997) 999-1007.
DOI URL |
| [43] |
N. Rao, B.H. Ziran, B.A. Lipsky, Plast Reconstr. Surg. 127 (2011) 177s-187s Suppl 1.
DOI URL |
| [1] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
| [2] | Lili Cao, Bingwei Luo, Hongli Gao, Min Miao, Tao Wang, Yuan Deng. Structure induced wide range wettability: Controlled surface of micro-nano/nano structured copper films for enhanced interface [J]. J. Mater. Sci. Technol., 2021, 84(0): 147-158. |
| [3] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
| [4] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
| [5] | Jianglong Yan, Dandan Xia, Pan Xiong, Yangyang Li, Wenhao Zhou, Qiyao Li, Pei Wang, Yufeng Zheng, Yan Cheng. Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities [J]. J. Mater. Sci. Technol., 2021, 71(0): 31-43. |
| [6] | Chaolin Tan, Youxiang Chew, Guijun Bi, Di Wang, Wenyou Ma, Yongqiang Yang, Kesong Zhou. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72(0): 217-222. |
| [7] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
| [8] | Zhihua Yu, Huimei Zhang, Jianying Huang, Shuhui Li, Songnan Zhang, Yan Cheng, Jiajun Mao, Xiuli Dong, Shouwei Gao, Shanchi Wang, Zhong Chen, Yaoxing Jiang, Yuekun Lai. Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting [J]. J. Mater. Sci. Technol., 2021, 61(0): 85-92. |
| [9] | Hima Bindu Ruttala, Thiruganesh Ramasamy, Raghu Ram Teja Ruttala, Tuan Hiep Tran, Jee-Heon Jeong, Han-Gon Choi, Sae Kwang Ku, Chul Soon Yong, Jong Oh Kim. Mitochondria-targeting multi-metallic ZnCuO nanoparticles and IR780 for efficient photodynamic and photothermal cancer treatments [J]. J. Mater. Sci. Technol., 2021, 86(0): 139-150. |
| [10] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
| [11] | Xinchang Zhang, Tan Pan, Yitao Chen, Lan Li, Yunlu Zhang, Frank Liou. Additive manufacturing of copper-stainless steel hybrid components using laser-aided directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 80(0): 100-116. |
| [12] | Dawei Guo, Chi Tat Kwok. A corrosion study on W-Cu alloys in sodium chloride solution at different pH [J]. J. Mater. Sci. Technol., 2021, 64(0): 38-56. |
| [13] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
| [14] | Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity [J]. J. Mater. Sci. Technol., 2020, 48(0): 130-139. |
| [15] | Huabo Li, Yuanyuan Cui, Yixin Liu, Lu Zhang, Quan Zhang, Juhua Zhang, Wei-Lin Dai. Highly efficient Ag-modified copper phyllosilicate nanotube: Preparation by co-ammonia evaporation hydrothermal method and application in the selective hydrogenation of carbonate [J]. J. Mater. Sci. Technol., 2020, 47(0): 29-37. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
