J. Mater. Sci. Technol. ›› 2021, Vol. 84: 147-158.DOI: 10.1016/j.jmst.2021.01.021
• Research Article • Previous Articles Next Articles
Lili Caoa, Bingwei Luoc, Hongli Gaoa, Min Miaoa,*(), Tao Wanga, Yuan Dengb,*(
)
Received:
2020-10-04
Revised:
2020-12-21
Accepted:
2021-01-02
Published:
2021-09-10
Online:
2021-02-08
Contact:
Min Miao,Yuan Deng
About author:
dengyuan@buaa.edu.cn (Y. Deng).Lili Cao, Bingwei Luo, Hongli Gao, Min Miao, Tao Wang, Yuan Deng. Structure induced wide range wettability: Controlled surface of micro-nano/nano structured copper films for enhanced interface[J]. J. Mater. Sci. Technol., 2021, 84: 147-158.
Fig. 2. Cross sectional and surface SEM images and AFM images: (a-c) a series of oblique Cu nanowire-array films with thicknesses varying from 4.7 μm (a1) to 16.4 μm (c1); (d) vertical Cu nanowire-array film perpendicular to the substrate with a thickness of 3.3 μm. Note that the contact angles (inset images) of the oblique nanowire-array film changed with varying thicknesses. SEM images of single nanowire: (e) and (f) oblique nanowires; (g) vertical nanowires. (h) Schematic of the contact state between water and nanowires in the nanogaps.
Fig. 3. Various micro-nano structured Cu films with low surface energy and hydrophobic wettability with a static contact angle of up to 133° were fabricated. The average diameter and density of the clusters depended largely on the film thickness and nano structure of the bone film, respectively. SEM images: (a) micro-nano structured oblique Cu nanowire-array film with a thickness of 19.1 μm; (b) Top of the cluster; (c) Micro-pit; (d) Detailed nanostructure of the micro-pit; (e) micro-nano structured oblique Cu nanowire-array film with a thickness of 4.5 μm; (f) micro-nano structured oblique Cu nanowire film with a thickness of 800 nm.
Fig. 4. The surface wettability of the Cu film was optimized by controlling its internal structure, thus, achieving extreme properties and contact angles from 6° to 152°. Surface and cross-sectional SEM images of Cu films: (a) Cu nanoparticle thin film (80 nm); (b) Cu nanoparticle thin film (50 nm); (c) Cu nanoparticle thin film (130 nm); (d) Cu foam film; (e) Cu nanowire-array films; (f) Micro-nano structured Cu films.
Fig. 5. Various micro-nano structured Cu films with low surface energy and hydrophobic wettability with a static contact angle of up to 152° were fabricated. The average diameter and density of the clusters depended significantly on the film thickness and nanostructure of the bone film, respectively. SEM images: (a) Micro-nano structured Cu nanoparticle film with a thickness of 2.8 μm; (b) cluster of micro-nano structured Cu nanoparticle film; (c) detailed nanostructure of top of cluster; (d) nanostructure of micro-pit; (e) micro-nano structured Cu dense-cluster film with a thickness of 500 nm; (f) Cu nanoparticle-clusters film with a thickness of 1.2 μm.
Fig. 7. The surfaces of the Cu films were modified by Ni nanoparticles to investigate the effect of the nanogaps and nanowires aggregation on the wettability of the Cu films, which also indicated that the surface wettability of the Cu film was determined by the structure of the film rather than by the surface chemical state. Surface SEM images of the Cu nanowire-array films: (a1-d1) before modification; (a2-d2) after modification. The insets show the corresponding AFM images (top right corner) and contact angle pictures (bottom left corner). (e) Schematic of the contact state between water and the nanowires in the nanogaps. Scale bar: 500 nm.
Fig. 8. Cross-sectional SEM images of the Bi2Te3-Cu bilayer films: (a) Cu nanoparticle film with a diameter of 80 nm; (b) dense Cu nanoparticle film with a diameter of 50 nm; (c) Cu nanoparticle film with a diameter of 130 nm; (d) Cu nanowire-array film; (e) micro-nano structured Cu nanoparticle film; (f) micro-nano structured Cu nanowire-array film.
No. | Morphology | Sheet resistance (mΩ/sq) | Thickness (μm) | ρ (×10-6 Ω m) |
---|---|---|---|---|
1 | Nanoparticles (80 nm) | 493 | 0.34 | 0.17 |
2 | Nanoparticles (50 nm) | 205 | 0.84 | 0.17 |
3 | Nanoparticles (130 nm) | 297 | 0.38 | 0.11 |
4 | Oblique nanowires | 234 | 4.69 | 1.10 |
5 | Oblique nanowires | 119 | 10.52 | 1.25 |
6 | Oblique nanowires | 81 | 16.40 | 1.33 |
7 | Vertical nanowires | 462 | 3.25 | 1.50 |
8 | Micro-nano structured film (bone: oblique nanowire-array) | 77 | 19.13 | 1.49 |
9 | Micro-nano structured film (bone: nanoparticle) | 158 | 2.81 | 0.44 |
10 | Micro-nano structured film (bone: oblique nanowire-array) | 299 | 4.52 | 1.35 |
Table 1 Electrical properties of the Cu films (relative errors of the measured sheet resistance were within 1%).
No. | Morphology | Sheet resistance (mΩ/sq) | Thickness (μm) | ρ (×10-6 Ω m) |
---|---|---|---|---|
1 | Nanoparticles (80 nm) | 493 | 0.34 | 0.17 |
2 | Nanoparticles (50 nm) | 205 | 0.84 | 0.17 |
3 | Nanoparticles (130 nm) | 297 | 0.38 | 0.11 |
4 | Oblique nanowires | 234 | 4.69 | 1.10 |
5 | Oblique nanowires | 119 | 10.52 | 1.25 |
6 | Oblique nanowires | 81 | 16.40 | 1.33 |
7 | Vertical nanowires | 462 | 3.25 | 1.50 |
8 | Micro-nano structured film (bone: oblique nanowire-array) | 77 | 19.13 | 1.49 |
9 | Micro-nano structured film (bone: nanoparticle) | 158 | 2.81 | 0.44 |
10 | Micro-nano structured film (bone: oblique nanowire-array) | 299 | 4.52 | 1.35 |
[1] |
L. Zhang, X. Qin, S. Zhao, A. Wang, J. Luo, Z.L. Wang, F. Kang, Z. Lin, B. Li, Adv. Mater. 32 (2020), 1908445.
DOI URL |
[2] |
P. Gupta, K. Vermani, S. Garg, Drug Discov. Today 7 (2002) 569-579.
DOI URL |
[3] |
Y. Peng, X. Jin, Y. Zheng, D. Han, K. Liu, L. Jiang, Adv. Mater. 29 (2017), 1703009.
DOI URL |
[4] |
Y. Yonemoto, T. Kunugi, Int. J. Heat Mass Transf. 96 (2016) 614-626.
DOI URL |
[5] |
S. Li, J. Huang, Z. Chen, G. Chen, Y. Lai, J. Mater. Chem. A 5 (2017) 31-55.
DOI URL |
[6] |
M. Copel, M.C. Reuter, E. Kaxiras, R.M. Tromp, Phys. Rev. Lett. 63 (1989) 632-635.
PMID |
[7] |
D. Xu, W. Yang, X. Li, Z. Hu, M. Li, L. Wang, Appl. Surf. Sci. 515 (2020), 145996.
DOI URL |
[8] |
L. Li, B. Li, J. Dong, J. Zhang, J. Mater. Chem. A 4 (2016) 13677-13725.
DOI URL |
[9] |
P. Ge, J. Zhang, Y. Liu, S. Wang, W. Liu, N. Yu, Y. Wu, J. Zhang, B. Yang, Adv. Funct. Mater. 28 (2018), 1802001.
DOI URL |
[10] |
Q. Zhang, Y. Li, Y. Yan, X. Zhang, D. Tian, L. Jiang, ACS Nano 14 (2020) 7287-7296.
DOI URL |
[11] |
B. Mohammadian, R.K. Annavarapu, A. Raiyan, S.K. Nemani, S. Kim, M. Wang, H. Sojoudi, Langmuir 36 (2020) 6635-6650.
DOI PMID |
[12] |
S.H. Joghee, K.M. Uthandi, N. Singh, S. Katti, P. Kumar, R.K. Renganayagalu, B. Pullithadathil, Langmuir 36 (2020) 6352-6364.
DOI URL |
[13] |
N.R. Glavin, A.R. Waite, C. Muratore, J.E. Bultman, J. Hu, J.J. Gengler, A.A. Voevodin, T.S. Fisher, Surf. Coat. Technol. 397 (2020), 126017.
DOI URL |
[14] |
J. Wang, C. Teng, Y. Jiang, Y. Zhu, L. Jiang, Adv. Mater. 31 (2019), 1806742.
DOI URL |
[15] |
T. Gu, W. Teng, N. Bai, Z. Chen, J. Fan, W.X. Zhang, D. Zhao, J. Mater. Chem. A 8 (2020) 9545-9553.
DOI URL |
[16] |
J. Wang, Q. Wang, Z. Liu, Z. Wu, J. Cai, D. Wang, Appl. Surf. Sci. 384 (2016) 200-206.
DOI URL |
[17] |
A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, B.J. Wiley, Adv. Mater. 22 (2010) 3558-3563.
DOI URL |
[18] |
J.X. Hou, X.Y. Li, K. Lu, J. Mater. Sci. Technol. 68 (2020) 30-34.
DOI URL |
[19] |
H. Gu, C. Wang, S. Gong, Y. Mei, H. Li, W. Ma, Surf. Coat. Technol. 292 (2016) 72-77.
DOI URL |
[20] |
Y. Luo, J. Li, J. Zhu, Y. Zhao, X. Gao, Angew. Chem. 54 (2015) 4876-4879.
DOI URL |
[21] |
L. Dou, F. Cui, Y. Yu, G. Khanarian, S.W. Eaton, Q. Yang, J. Resasco, C. Schildknecht, K. Schierle-Arndt, P. Yang, ACS Nano 10 (2016) 2600-2606.
DOI URL |
[22] |
F. Hoeng, A. Denneulin, J. Bras, Nanoscale 8 (2016) 13131-13154.
DOI URL |
[23] |
J. Ou, Z. Wang, F. Wang, M. Xue, W. Li, A. Amirfazli, Appl. Surf. Sci. 364 (2016) 81-85.
DOI URL |
[24] |
S.M. Ramos, E. Charlaix, A. Benyagoub, M. Toulemonde, Phys. Rev. E 67 (2003), 031604.
DOI URL |
[25] |
R. Wen, Q. Li, W. Wang, B. Latour, C.H. Li, C. Li, Y.C. Lee, R. Yang, Nano Energy 38 (2017) 59-65.
DOI URL |
[26] |
K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, S. Fan, Adv. Mater. 23 (2011) 1154-1161.
DOI URL |
[27] |
A.P.P. Praxedes, G.D. Webler, S.T. Souza, A.S. Ribeiro, E.J.S. Fonseca, I.N. de Oliveira, Appl. Surf. Sci. 370 (2016) 25-31.
DOI URL |
[28] |
A. Vu, Y. Qian, A. Stein, Adv. Energy Mater. 2 (2012) 1056-1085.
DOI URL |
[29] |
S.M. Jung, D.J. Preston, H.Y. Jung, Z. Deng, E.N. Wang, J. Kong, Adv. Mater. 28 (2016) 1413-1419.
DOI URL |
[30] |
L. Cao, W. Zhu, B. Luo, M. Miao, L. Wang, H. Zhang, Y. Deng, ACS Appl. Mater. Interfaces 12 (2020) 3836-3846.
DOI URL |
[31] |
X. Kong, W. Zhu, L. Cao, Y. Peng, S. Shen, Y. Deng, ACS Appl. Mater. Interfaces 9 (2017) 25606-25614.
DOI URL |
[32] |
X. Zhu, L. Cao, W. Zhu, Y. Deng, Adv. Mater. Int. 5 (2018), 1801279.
DOI URL |
[33] |
L. Cao, Y. Deng, H. Gao, Y. Wang, X. Chen, Z. Zhu, Phys. Chem. Chem. Phys. 17 (2015) 6809-6818.
DOI URL |
[34] |
L. Cao, Y. Wang, Y. Deng, H. Gao, B. Luo, W. Zhu, J. Nanopart. Res. 15 (2013) 2088.
DOI URL |
[35] |
M. Liu, S. Wang, L. Jiang, Nat. Rev. Mater. 2 (2017) 17036.
DOI URL |
[36] |
Y. Song, L. Zhang, Z. Liu, D.J. Preston, E.N. Wang, Appl. Phys. Lett. 116 (2020), 253702.
DOI URL |
[37] |
A.K. Kulkarni, K.H. Schulz, T.S. Lim, M. Khan, Thin Solid Films 345 (1999) 273-277.
DOI URL |
[38] |
W. Wu, S.H. Brongersma, M. Van Hove, K. Maex, Appl. Phys. Lett. 84 (2004) 2838-2840.
DOI URL |
[39] |
P. Podesva, F. Foret, Curr. Anal. Chem. 9 (2013) 642-652.
DOI URL |
[1] | Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications [J]. J. Mater. Sci. Technol., 2021, 75(0): 39-47. |
[2] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[3] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[4] | Tianqi Hou, Zirui Jia, Ailing Feng, Zehua Zhou, Xuehua Liu, Hualiang Lv, Guanglei Wu. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity [J]. J. Mater. Sci. Technol., 2021, 68(0): 61-69. |
[5] | Baijie Song, Shuanghao Wu, Hao Yan, Kun Zhu, Liuxue Xu, Bo Shen, Jiwei Zhai. Fatigue-less relaxor ferroelectric thin films with high energy storage density via defect engineer [J]. J. Mater. Sci. Technol., 2021, 77(0): 178-186. |
[6] | Wenyan Luo, Yunzhong Liu, Cheng Tu. Wetting behaviors and interfacial characteristics of molten AlxCoCrCuFeNi high-entropy alloys on a WC substrate [J]. J. Mater. Sci. Technol., 2021, 78(0): 192-201. |
[7] | Zhang Yuan, Ye He, Chuanchuan Lin, Peng Liu, Kaiyong Cai. Antibacterial surface design of biomedical titanium materials for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 78(0): 51-67. |
[8] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
[9] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[10] | Jinpeng Li, Huarui Zhang, Ming Gao, Qingling Li, Weidong Bian, Yongshuang Cui, Tongxiang Tao, Hu Zhang. Mechanisms of yttrium on the wettability, surface tension and interactions between Ni-20Co-20Cr-10Al-ξY alloys and MgO ceramics [J]. J. Mater. Sci. Technol., 2021, 70(0): 39-48. |
[11] | Bing Yang, Gang He, Wenhao Wang, Yongchun Zhang, Chong Zhang, Yufeng Xia, Xiaofen Xu. Diffusion-activated high performance ZnSnO/Yb2O3 thin film transistors and application in low-voltage-operated logic circuits [J]. J. Mater. Sci. Technol., 2021, 70(0): 49-58. |
[12] | Peixing Chen, Sixiang Wang, Zhi Huang, Yan Gao, Yu Zhang, Chunli Wang, Tingting Xia, Linhao Li, Wanqian Liu, Li Yang. Multi-functionalized nanofibers with reactive oxygen species scavenging capability and fibrocartilage inductivity for tendon-bone integration [J]. J. Mater. Sci. Technol., 2021, 70(0): 91-104. |
[13] | Lulu Li, Irene J. Beyerlein, Weizhong Han. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 61-65. |
[14] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
[15] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||