J. Mater. Sci. Technol. ›› 2021, Vol. 84: 139-146.DOI: 10.1016/j.jmst.2020.12.060
• Research Article • Previous Articles Next Articles
Jiayun Fenga,b, Yanhong Tiana,*(), Sumei Wangc, Ming Xiaob, Zhuang Huib,d, Chunjin Hanga, Walter W. Duleyb,e, Y. Norman Zhoub,*(
)
Received:
2020-08-19
Revised:
2020-12-09
Accepted:
2020-12-10
Published:
2021-09-10
Online:
2021-02-05
Contact:
Yanhong Tian,Y. Norman Zhou
About author:
nzhou@uwaterloo.ca (Y.N. Zhou).Jiayun Feng, Yanhong Tian, Sumei Wang, Ming Xiao, Zhuang Hui, Chunjin Hang, Walter W. Duley, Y. Norman Zhou. Femtosecond laser irradiation induced heterojunctions between carbon nanofibers and silver nanowires for a flexible strain sensor[J]. J. Mater. Sci. Technol., 2021, 84: 139-146.
Fig. 1. SEM images of Ag nanowire-CNF heterojunctions formed under fs laser irradiation at different fluences and irradiation time: (a) 7.0 mJ/cm2 for 30 s, (b) 8.5 mJ/cm2 for 30 s, (c) 8.5 mJ/cm2 for 60 s and (d) 10.0 mJ/cm2 for 30 s.
Fig. 2. TEM morphology and composition analysis of T-type Ag NW tip-CNF heterojunction structures treated by fs laser irradiation. The fluence was 8.5 mJ/cm2, the pulse repetition frequency was 1000 Hz, and the irradiation time was 30 s: (a) Overall morphology of two Ag tip-CNF heterojunctions formed on the same CNF; (b) HRTEM image of one of these Ag-CNF heterojunctions; (c) Magnified image of (b), indicating the area of FFT processing; (d, e) Diffraction patterns of Ag, and CNF adjacent to the Ag-CNF interface; (f) Diffraction pattern within the Ag-CNF interface; (g)?(i) EDX mappings of the Ag, C and O elemental abundances in the region shown in (b).
Fig. 3. TEM images of morphology together with compositional analysis of Ag nanowire-CNF cross structures treated by fs laser irradiation. The fluence was 8.5 mJ/cm2, the pulse repetition frequency was 1000 Hz, and the irradiation time was 30 s: (a) Overall morphology of an Ag NW-CNF cross-structured heterojunction; (b) HRTEM image of the Ag-CNF heterojunction; (c) Magnified image of (b), indicating the area of FFT processing; (d)?(f) The diffraction patterns of Ag, CNF and the Ag-CNF interface, respectively; (g)?(i) EDX mappings of (b), indicating the elemental distribution of Ag, C, and O, respectively.
Fig. 4. FDTD simulations of the distribution of electric field intensity for four different structures under fs laser irradiation with two orthogonal polarization directions as indicated by arrows in the figure: (a, b) T-type Ag NW tip-CNF; (c, d) T-type CNF tip-Ag NW; X-type cross-structures (e, f) Ag NW on top of CNF and (g, h) CNF on top of Ag NW.
Fig. 5. (a) Schematic of the resistance measurement configuration used for a single Ag nanowire-CNF heterojunction; (b) SEM image of the Ag nanowire-CNF heterojunction before laser irradiation; (c) Conductivity change with increasing laser irradiation time; (d?f) I?V responses of the heterojunction after laser irradiation under 8.5 mJ/cm2 for 0 s, 15 s, and 30 s, respectively. Sequential voltage sweeps are indicated as 1 to 5.
Fig. 6. Performance of fabricated strain sensors with and without fs laser processing: (a) SEM image showing the structure of a CNF-Ag NW hybrid nanowire strain sensor after fs laser joining. (b) Schematic of the experimental configuration for the determination of resistance vs strain in a hybrid sensor consisting of a mixture of CNFs and Ag NWs. The density of CNFs and Ag NWs is much higher than that shown in this figure; (c) Relative resistance change with strain for sensors coated with CNF & Ag hybrid nanowires. (d) Relative resistance change versus applied strain for sensors coated only with CNF nanowires. (e) Time-dependent resistance in a CNF-Ag NW sensor over several cycles to strains of 15.8% and 31.7%. (f) SEM image of the surface of a typical sensor after multiple strain cycles where the maximum strain exceeded 70%. (g, h) Schematic of the breakage and recovery of CNF-Ag NW junctions with strain cycles, which explains how strain influences the resistance of strain sensor.
[1] |
G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao, G. Wang, J. Lian, Science 349 (2015) 1083-1087.
DOI URL |
[2] |
Y. Liu, Z. Xu, J. Zhan, P. Li, C. Gao, Adv. Mater. 28 (2016) 7941-7947.
DOI URL |
[3] |
X. Zhou, J. Su, C. Wang, C. Fang, X. He, W. Lei, C. Zhang, Z. Huang, J. Mater. Sci. Technol. 46 (2020) 74-87.
DOI URL |
[4] |
M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339 (2013) 535-539.
DOI URL |
[5] |
K. Evanoff, J. Khan, A.A. Balandin, A. Magasinski, W.J. Ready, T.F. Fuller, G. Yushin, Adv. Mater. 24 (2012) 533-537.
DOI URL |
[6] |
D. Hu, W. Zhu, Y. Peng, S. Shen, Y. Deng, J. Mater. Sci. Technol. 33 (2017) 1113-1119.
DOI URL |
[7] |
B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Powder Technol. 221 (2012) 351-358.
DOI URL |
[8] |
I. Jang, S.B. Sinnott, D. Danailov, P. Keblinski, Nano Lett. 4 (2004) 109-114.
DOI URL |
[9] |
F. Banhart, Nano Lett. 1 (2001) 329-332.
DOI URL |
[10] |
D.N. Madsen, K. Mølhave, R. Mateiu, A.M. Rasmussen, M. Brorson, C.J.H. Jacobsen, P. Bøggild, Nano Lett. 3 (2003) 47-49.
DOI URL |
[11] |
J.A. Rodriguez-Manzo, F. Banhart, M. Terrones, H. Terrones, N. Grobert, P.M. Ajayan, B.G. Sumpter, V. Meunier, M. Wang, Y. Bando, D. Golberg, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 4591-4595.
DOI URL |
[12] |
X. Yang, Z. Han, Y. Li, D. Chen, P. Zhang, A.C. To, Phys. E 46 (2012) 30-32.
DOI URL |
[13] |
F.Y. Meng, S.Q. Shi, D.S. Xu, R. Yang, Carbon 44 (2006) 1263-1266.
DOI URL |
[14] | N.M. Piper, Y. Fu, J. Tao, X. Yang, A.C. To, Phys. Lett. 502 (2011) 231-234. |
[15] |
F.Y. Meng, S.Q. Shi, D.S. Xu, R. Yang, Phys. Rev. B 70 (2004), 125418.
DOI URL |
[16] |
Y. Yuan, Z. Liu, K. Zhang, W. Han, J. Chen, Opt. Laser Technol. 103 (2018) 327-329.
DOI URL |
[17] |
Y. Yuan, J. Chen, Nanomaterials (Basel) 6 (2016) 36.
DOI URL |
[18] |
M. Terrones, H. Terrones, F. Banhart, J.C. Charlier, P.M. Ajayan, Science 288 (2000) 1226-1229.
PMID |
[19] |
F. Banhart, Nano Lett. 1 (2001) 329-332.
DOI URL |
[20] |
J.A. Rodriguez-Manzo, A. Tolvanen, A.V. Krasheninnikov, K. Nordlund, A. Demortiere, F. Banhart, Nanoscale 2 (2010) 901-905.
DOI URL |
[21] |
Y. Yao, K.K. Fu, S. Zhu, J. Dai, Y. Wang, G. Pastel, Y. Chen, T. Li, C. Wang, T. Li, L. Hu, Nano Lett. 16 (2016) 7282-7289.
DOI URL |
[22] |
Y. Fu, B. Carlberg, N. Lindahl, N. Lindvall, J. Bielecki, A. Matic, Y. Song, Z. Hu, Z. Lai, L. Ye, J. Sun, Y. Zhang, Y. Zhang, J. Liu, Adv. Mater. 24 (2012) 1576-1581.
DOI URL |
[23] |
Y. Huang, Y. Tian, C. Hang, Y. Liu, S. Wang, M. Qi, H. Zhang, J. Zhao, ACS Appl. Mater. Interfaces 11 (2019) 21850-21858.
DOI URL |
[24] | H. Zhang, S. Wang, Y. Tian, J. Wen, C. Hang, Z. Zheng, Y. Huang, S. Ding, C. Wang, Nano Mater. Sci. 2 (2020) 164-171. |
[25] |
Z. Hui, Y. Liu, W. Guo, L. Li, N. Mu, C. Jin, Y. Zhu, P. Peng, Nanotechnology 28 (2017), 285703.
DOI URL |
[26] |
L. Liao, M. Zheng, Z. Zhang, B. Yan, X. Chang, G. Ji, Z. Shen, T. Wu, J. Cao, J. Zhang, H. Gong, J. Cao, T. Yu, Carbon 47 (2009) 1841-1845.
DOI URL |
[27] |
X. Liu, B. Wu, Q. Zhang, J.N. Yip, G. Yu, Q. Xiong, N. Mathews, T.C. Sum, ACS Nano 8 (2014) 10101-10110.
DOI URL |
[28] |
G.G. Tibbetts, M.L. Lake, K.L. Strong, B.P. Rice, Compos. Sci. Technol. 67 (2007) 1709-1718.
DOI URL |
[29] |
P. Zijlstra, J.W.M. Chon, M. Gu, Nature 459 (2009) 410-413.
DOI URL |
[30] |
L. Liu, P. Peng, A. Hu, G. Zou, W.W. Duley, Y.N. Zhou, Appl. Phys. Lett. 102 (2013), 073107.
DOI URL |
[31] |
H. Choi, S. Ko, Y. Choi, P. Joo, T. Kim, B.R. Lee, J. Jung, H.J. Choi, M. Cha, J. Jeong, I. Hwang, M.H. Song, B. Kim, J.Y. Kim, Nat. Photonics 7 (2013) 732-738.
DOI URL |
[32] |
C. Chen, C. Wang, C. Wei, C. Hsieh, Y. Chen, Y. Chen, C. Lai, C. Liu, C. Hsieh, P. Chou, J. Phys. Chem. C 114 (2010) 799-802.
DOI URL |
[33] |
S. Duan, Z. Wang, L. Zhang, J. Liu, C. Li, Adv. Mater. Technol. 3 (2018), 1800020.
DOI URL |
[34] |
X. Wang, J. Li, H. Song, H. Huang, J. Gou, ACS Appl. Mater. Interfaces 10 (2018) 7371-7380.
DOI URL |
[35] |
Y. Jiang, Z. Liu, N. Matsuhisa, D. Qi, W.R. Leow, H. Yang, J. Yu, G. Chen, Y. Liu, C. Wan, Z. Liu, X. Chen, Adv. Mater. 30 (2018), 1706589.
DOI URL |
[36] |
J.K. Chen, D.Y. Tzou, J.E. Beraun, Int. J. Heat Mass Transfer. 49 (2006) 307-316.
DOI URL |
[37] |
S.L. Sobolev, Int. J. Heat Mass Transfer 94 (2016) 138-144.
DOI URL |
[1] | Bhavana Joshi, Edmund Samuel, Yong-il Kim, Govindasami Periyasami, Mostafizur Rahaman, Sam S. Yoon. Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 67(0): 116-126. |
[2] | Xuepeng Ni, Zhe Cui, Ning Jiang, Huifang Chen, Qilin Wu, Anqi Ju, Meifang Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density [J]. J. Mater. Sci. Technol., 2021, 77(0): 169-177. |
[3] | Boda Zheng, Qingsheng Zhu, Yang Zhao. Fabrication of high-quality silver nanowire conductive film and its application for transparent film heaters [J]. J. Mater. Sci. Technol., 2021, 71(0): 221-227. |
[4] | J.J.J. Nivas, E. Allahyari, A. Vecchione, Q. Hao, S. Amoruso, X. Wang. Laser ablation and structuring of CdZnTe with femtosecond laser pulses [J]. J. Mater. Sci. Technol., 2020, 48(0): 180-185. |
[5] | Wei Xu, Qingsong Xu, Qijin Huang, Ruiqin Tan, Wenfeng Shen, Weijie Song. Fabrication of Flexible Transparent Conductive Films with Silver Nanowire by Vacuum Filtration and PET Mold Transfer [J]. J. Mater. Sci. Technol., 2016, 32(2): 158-161. |
[6] | Cheng Yang, Youhong Tang, Zijin Su, Zhexu Zhang, Cheng Fang. Preparation of Silver Nanowires via a Rapid, Scalable and Green Pathway [J]. J. Mater. Sci. Technol., 2015, 31(1): 16-22. |
[7] | Shuhe Liu, Shuchun Zhao, Yaochun Yao, Peng Dong, Chao Yang. Crystallined Hybrid Carbon Synthesized by Catalytic Carbonization of Biomass and in-situ Growth of Carbon Nanofibers [J]. J. Mater. Sci. Technol., 2014, 30(5): 466-472. |
[8] | Qiang Zhang,Xingpeng Guo,Nengli Dai,Peixiang Lu. Corrosion and Fatigue Testing of Microsized 304 Stainless Steel Beams Fabricated by Femtosecond Laser [J]. J Mater Sci Technol, 2009, 25(02): 187-193. |
[9] | Xiang QI, Jun ZHANG, Chunxu PAN. A Novel Process for High-efficient Synthesis of One-dimensional Carbon Nanomaterials from Flames [J]. J Mater Sci Technol, 2008, 24(04): 603-607. |
[10] | Haifei YAO, Jialin SUN, Wei LIU, Hongsan SUN. Effect of a Magnetic Field on the Preparation of Silver Nanowires Using Solid Electrolyte Thin Films [J]. J Mater Sci Technol, 2007, 23(01): 39-42. |
[11] | Xin TONG, Yong CHEN, Huiming CHENG. Influence of Carbon Nanofiber Addition on Mechanical Properties and Crystallization Behavior of Polypropylene [J]. J Mater Sci Technol, 2005, 21(05): 686-690. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||