J. Mater. Sci. Technol. ›› 2021, Vol. 90: 143-149.DOI: 10.1016/j.jmst.2021.03.019
• Research Article • Previous Articles Next Articles
Linlin Zhanga, Wenxing Penga, YaKun Lib, Rui Qina, Dong Yuec, Chengjun Gea, Jianjun Liaoa,*(
)
Received:2020-11-03
Revised:2021-03-02
Accepted:2021-03-03
Published:2021-11-05
Online:2021-11-05
Contact:
Jianjun Liao
About author:* E-mail address: liaojianjun008@163.com (J. Liao).Linlin Zhang, Wenxing Peng, YaKun Li, Rui Qin, Dong Yue, Chengjun Ge, Jianjun Liao. Constructing built-in electric field in graphitic carbon nitride hollow nanospheres by co-doping and modified in-situ Ni2P for broad spectrum photocatalytic activity[J]. J. Mater. Sci. Technol., 2021, 90: 143-149.
Fig. 1. (a) Scheme illustration of the synthetic route of the Ni2P/SO—HC3N4. (b) XRD pattern and (c) FTIR spectra of C3N4, HC3N4, SO—HC3N4, and Ni2P/SO—HC3N4.
Fig. 3. Photocatalytic H2 evolution rates of C3N4, HC3N4, SO—HC3N4, and Ni2P/SO—HC3N4 under (a) Vis-NIR and (b) NIR irradiation. (c) Cycling runs of photocatalytic H2 generation over Ni2P/SO—HC3N4. Photocatalytic reduction of Cr (VI) with different photocatalysts under (d) Vis-NIR and (e) NIR irradiation. (f) Cycling runs of the photocatalytic reduction of Cr (VI) over Ni2P/SO—HC3N4.
Fig. 4. (a) EIS Nyquist plots, (b) I-t curves, and (c) steady-state PL spectra of C3N4, HC3N4, SO—HC3N4, and Ni2P/SO—HC3N4. (d) TS-PL spectra and (e) work functions of C3N4 and Ni2P/SO—HC3N4. (f) Schematic illustration of the photocatalytic process of Ni2P/SO—HC3N4 composites.
| [1] |
Y. Pang, J. Zhang, R. Ma, Z. Qu, E. Lee, T. Luo, ACS Energy Lett. 5 (2020) 437-456.
DOI URL |
| [2] |
B.J. Ng, L.K. Putri, X.Y. Kong, Y.W. Teh, P. Pasbakhsh, S.P. Chai, Adv. Sci. 7 (2020) 1903171.
DOI URL |
| [3] |
X. Wang, J. Zhu, X. Yu, X. Fu, Y. Zhu, Y. Zhang, J. Mater. Sci. Technol. 77 (2021) 19-27.
DOI |
| [4] |
L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang, X. Zhang, J.J. Zou, Z.L. Wang, Adv. Energy Mater. 10 (2020) 2000214.
DOI URL |
| [5] |
T. Zhao, Z. Xing, Z. Xiu, Z. Li, P. Chen, Q. Zhu, W. Zhou, J. Hazard. Mater. 364 (2019) 117-124.
DOI URL |
| [6] |
Y. Li, X. Li, H. Zhang, J. Fan, Q. Xiang, J. Mater. Sci. Technol. 56 (2020) 69-88.
DOI URL |
| [7] |
X. Hu, W. Zhang, Y. Yong, Y. Xu, X. Wang, X. Yao, Appl. Surf. Sci. 510 (2020) 145413.
DOI URL |
| [8] |
Y. Wang, K. Wang, J. Wang, X. Wu, G. Zhang, J. Mater. Sci. Technol. 56 (2020) 236-243.
DOI URL |
| [9] |
Y. Li, M. Zhou, B. Cheng, Y. Shao, J. Mater. Sci. Technol. 56 (2020) 1-17.
DOI URL |
| [10] |
T. Paul, D. Das, B.K. Das, S. Sarkar, S. Maiti, K.K. Chattopadhyay, J. Hazard. Mater. 380 (2019) 120855.
DOI URL |
| [11] |
T. Zhao, Z. Xing, Z. Xiu, Z. Li, S. Yang, Q. Zhu, W. Zhou, Int. J. Hydrog. Energy 44 (2019) 1586-1596.
DOI URL |
| [12] |
F. Nekouei, S. Nekouei, M. Pouzesh, Y. Liu, Chem. Eng. J. 385 (2020) 123710.
DOI URL |
| [13] |
Z. Tong, D. Yang, Z. Li, Y. Nan, F. Ding, Y. Shen, Z. Jiang, ACS Nano 11 (2017) 1103-1112.
DOI URL |
| [14] |
W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Appl. Catal. B 219 (2017) 693-704.
DOI URL |
| [15] |
C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun, K. Lv, Appl. Catal. B 268 (2020) 118738.
DOI URL |
| [16] |
X. Zhao, Y. Fan, W. Zhang, X. Zhang, D. Han, L. Niu, A. Ivaska, ACS Catal. 10 (2020) 6367-6376.
DOI URL |
| [17] |
T. Zhao, Z. Xing, Z. Xiu, Z. Li, S. Yang, W. Zhou, ACS Appl. Mater. Interfaces 11 (2019) 7104-7111.
DOI URL |
| [18] |
D.E. Lee, S. Moru, W.K. Jo, S. Tonda, J. Mater. Sci. Technol. 82 (2021) 21-32.
DOI URL |
| [19] |
S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Appl. Catal. B 186 (2016) 77-87.
DOI URL |
| [20] |
H. Wang, Q. Lin, L. Yin, Y. Yang, Y. Qiu, C. Lu, H. Yang, Small 15 (2019) 1900011.
DOI URL |
| [21] |
X. Zhou, B. Jin, R. Chen, F. Peng, Y. Fang, Mater. Res. Bull. 48 (2013) 1447-1452.
DOI URL |
| [22] |
A. Habibi-Yangjeh, M. Mousavi, K. Nakata, J. Photochem. Photobiol. A 368 (2019) 120-136.
DOI URL |
| [23] |
M. Mousavi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 465 (2016) 83-92.
DOI URL |
| [24] |
R. He, K. Cheng, Z. Wei, S. Zhang, D. Xu, Appl. Surf. Sci. 465 (2019) 964-972.
DOI URL |
| [25] |
J. Meng, Y. Tian, C. Li, X. Lin, Z. Wang, L. Sun, Y. Zhou, J. Li, N. Yang, Y. Zong, F. Li, Y. Cao, H. Song, Catal. Sci. Technol. 9 (2019) 1911-1921.
DOI URL |
| [26] |
Q. Zhu, B. Qiu, M. Du, J. Ji, M. Nasir, M. Xing, J. Zhang, ACS Sustain. Chem. Eng. 8 (2020) 7497-7502.
DOI URL |
| [27] |
Y. Wang, X. Liu, J. Liu, B. Han, X. Hu, F. Yang, Z. Xu, Y. Li, S. Jia, Z. Li, Y. Zhao, Angew. Chem. Int. Ed. 57 (2018) 5765-5771.
DOI URL |
| [28] |
J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Nat. Commun. 3 (2012) 1139.
DOI URL |
| [29] |
D. Zheng, G. Zhang, X. Wang, Appl. Catal. B 179 (2015) 479-488.
DOI URL |
| [30] |
D. Zheng, X.N. Cao, X. Wang, Angew. Chem. Int. Ed. 55 (2016) 11512-11516.
DOI URL |
| [31] |
J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Small 13 (2017) 1603938.
DOI URL |
| [32] |
Y.P. Zhu, T.Z. Ren, Z.Y. Yuan, ACS Appl. Mater. Interfaces 7 (2015) 16850-16856.
DOI URL |
| [33] |
H.S.H. Mohamed, L. Wu, C.F. Li, Z.Y. Hu, J. Liu, Z. Deng, L.H. Chen, Y. Li, B.L. Su, ACS Appl. Mater. Interfaces 11 (2019) 32957-32968.
DOI URL |
| [34] |
D. Long, Z. Chen, X. Rao, Y. Zhang, ACS Appl. Energy Mater. 3 (2020) 5024-5030.
DOI URL |
| [35] |
K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Appl. Catal.B 176- 177 (2015) 44-52.
DOI URL |
| [36] |
L. Chen, D. Zhu, J. Li, X. Wang, J. Zhu, P.S. Francis, Y. Zheng, Appl. Catal. B 273 (2020) 119050.
DOI URL |
| [37] |
T. Uekert, H. Kasap, E. Reisner, J. Am. Chem. Soc. 141 (2019) 15201-15210.
DOI URL |
| [38] |
C. Liu, M. Xiong, B. Chai, J. Yan, G. Fan, G. Song, Catal. Sci. Technol. 9 (2019) 6929-6937.
DOI URL |
| [39] |
T. Yu, Z. Li, Z. Lv, X. Liu, G. Wang, G. Xie, L. Jiang, Appl. Surf. Sci. 509 (2020) 145371.
DOI URL |
| [40] |
Q. Liu, J. Shen, X. Yu, X. Yang, W. Liu, J. Yang, H. Tang, H. Xu, H. Li, Y. Li, J. Xu, Appl. Catal. B 248 (2019) 84-94.
DOI URL |
| [41] |
P. Wen, K. Zhao, H. Li, J. Li, J. Li, Q. Ma, S.M. Geyer, L. Jiang, Y. Qiu, J. Mater. Chem. A 8 (2020) 2995-3004.
DOI URL |
| [42] | Z. Zhu, Z. Lu, D. Wang, X. Tang, Y. Yan, W. Shi, Y. Wang, N. Gao, X. Yao, H. Dong, Appl. Catal. B 182 (2016) 115-122. |
| [43] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B 243 (2019) 556-565.
DOI URL |
| [44] |
H. Wang, Y. Bian, J. Hu, L. Dai, Appl. Catal. B 238 (2018) 592-598.
DOI URL |
| [45] |
H. Zhao, S. Sun, P. Jiang, Z.J. Xu, Chem. Eng. J. 315 (2017) 296-303.
DOI URL |
| [46] |
S. Samanta, R. Yadav, A. Kumar, A.K. Sinha, R. Srivastava, Appl. Catal. B 259 (2019) 118054.
DOI URL |
| [47] |
B. Yan, C. Du, G. Yang, Small 16 (2020) 1905700.
DOI PMID |
| [48] |
Y. Lin, C. Yang, S. Wu, X. Li, Y. Chen, W.L. Yang, Adv. Funct. Mater. 30 (2020) 2002918.
DOI URL |
| [1] | Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices [J]. J. Mater. Sci. Technol., 2021, 78(0): 202-222. |
| [2] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
| [3] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
| [4] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
| [5] | Yaxin Bi, Yanling Yang, Xiao-Lei Shi, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Guoquan Suo, Siyu Lu, Zhi-Gang Chen. Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4 [J]. J. Mater. Sci. Technol., 2021, 83(0): 102-112. |
| [6] | Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda. Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals [J]. J. Mater. Sci. Technol., 2021, 82(0): 21-32. |
| [7] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
| [8] | Wuyou Wang, Xuewen Wang, Lei Gan, Xinfei Ji, Zili Wu, Rongbin Zhang. All-solid-state Z-scheme BiVO4-Bi6O6(OH)3(NO3)3 heterostructure with prolonging electron-hole lifetime for enhanced photocatalytic hydrogen and oxygen evolution [J]. J. Mater. Sci. Technol., 2021, 77(0): 117-125. |
| [9] | Derek Hao, Zhi-gang Chen, Monika Figiela, Izabela Stepniak, Wei Wei, Bing-Jie Ni. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction [J]. J. Mater. Sci. Technol., 2021, 77(0): 163-168. |
| [10] | Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators [J]. J. Mater. Sci. Technol., 2021, 80(0): 75-83. |
| [11] | Xiangang Lin, Xiaojuan Hou, Lixia Cui, Shiqiang Zhao, Hong Bi, Haiwei Du, Yupeng Yuan. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 65(0): 164-170. |
| [12] | Hengming Huang, Kan Hu, Chen Xue, Zhiliang Wang, Zhenggang Fang, Ling Zhou, Menglong Sun, Zhongzi Xu, Jiahui Kou, Lianzhou Wang, Chunhua Lu. Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2021, 87(0): 207-215. |
| [13] | Panyong Kuang, Jingxiang Low, Bei Cheng, Jiaguo Yu, Jiajie Fan. MXene-based photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 18-44. |
| [14] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
| [15] | Miao-Miao Fang, Jun-Xia Shao, Xiang-Gang Huang, Jin-Yi Wang, Wei Chen. Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation [J]. J. Mater. Sci. Technol., 2020, 56(0): 133-142. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
