J. Mater. Sci. Technol. ›› 2021, Vol. 90: 150-158.DOI: 10.1016/j.jmst.2021.03.024
• Research Article • Previous Articles Next Articles
Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie*(
)
Received:2021-01-23
Revised:2021-02-24
Accepted:2021-03-01
Published:2021-11-05
Online:2021-11-05
Contact:
Guoqiang Xie
About author:* E-mail address: xieguoqiang@hit.edu.cn (G. Xie).Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering[J]. J. Mater. Sci. Technol., 2021, 90: 150-158.
| Reagent | Amount |
|---|---|
| Deionized water | 1000 mL |
| NaCl | 8.00 g |
| KCl | 0.40 g |
| NaHCO3 | 0.35 g |
| CaCl∙2H2O | 0.19 g |
| Na2HPO4∙7H2O | 0.09 g |
| MgSO4∙7H2O | 0.20 g |
| KH2PO4 | 0.06 g |
| Glucose | 1.00 g |
Table 1 Composition of Hanks’ solution with pH 7.4.
| Reagent | Amount |
|---|---|
| Deionized water | 1000 mL |
| NaCl | 8.00 g |
| KCl | 0.40 g |
| NaHCO3 | 0.35 g |
| CaCl∙2H2O | 0.19 g |
| Na2HPO4∙7H2O | 0.09 g |
| MgSO4∙7H2O | 0.20 g |
| KH2PO4 | 0.06 g |
| Glucose | 1.00 g |
Fig. 1. (a) XRD patterns, (b) grain size of the alloy powders at different ball-milling time, (c) morphology and size distribution of alloy powders at ball-milling time of 40 h.
| Type | Ti | Zr | Nb | Ta |
|---|---|---|---|---|
| Design atomic ratio | 1 | 1 | 1 | 1 |
| EDS results | 1 | 0.889 | 0.937 | 0.904 |
| ICP results | 1 | 0.884 | 0.977 | 0.974 |
Table 2 EDS and ICP results of the mechanically alloyed powders at 40 h (at.%).
| Type | Ti | Zr | Nb | Ta |
|---|---|---|---|---|
| Design atomic ratio | 1 | 1 | 1 | 1 |
| EDS results | 1 | 0.889 | 0.937 | 0.904 |
| ICP results | 1 | 0.884 | 0.977 | 0.974 |
Fig. 3. Back scattered-electron images of the alloy powders sintered at different temperatures: (a) low-magnified image at 700 °C and (b-f) high-magnified images at (b) 700 °C, (c) 800 °C (d) 900 °C, (e) 1000 °C, (f) 1100 °C, respectively.
Fig. 4. (a) TEM image of the NbTaTiZr HEA sintered at 1000 °C and (b, c, e, f) corresponding EDS maps of Ti, Zr, Nb and Ta, respectively; (d) element contents of two different contrast regions in black and white.
Fig. 5. TEM images of the NbTaTiZr HEA sintered at 1000 °C: (a) bright-field image and (b) its partially enlarged image; (c) SAED patterns of the Ta (Nb)-rich region and Ti (Zr)-rich region, respectively.
Fig. 7. (a) Compressive engineering stress-strain curves of the NbTaTiZr HEAs at room temperature, (b) yield strength and plastic strain of the NbTaTiZr HEAs compared with previous reports [14,16,24,39,[42], [43], [44]].
| Sintering temperature (°C) | σy (MPa) | σmax (MPa) | ε (%) | ρ (g/cm3) | E (GPa) |
|---|---|---|---|---|---|
| 700 | - | 2477 ± 67 | - | 8.79 | 142 |
| 800 | - | 2511 ± 78 | - | 8.84 | 143 |
| 900 | 2378 ± 67 | 2410 ± 48 | 2.84 | 8.87 | 141 |
| 1000 | 2182 ± 47 | 2274 ± 91 | 12.80 | 8.88 | 138 |
| 1100 | 1838 ± 27 | 2165 ± 25 | 10.65 | 8.87 | 137 |
Table 3 Several fundamental mechanical properties of the NbTaTiZr HEAs sintered at different temperatures.
| Sintering temperature (°C) | σy (MPa) | σmax (MPa) | ε (%) | ρ (g/cm3) | E (GPa) |
|---|---|---|---|---|---|
| 700 | - | 2477 ± 67 | - | 8.79 | 142 |
| 800 | - | 2511 ± 78 | - | 8.84 | 143 |
| 900 | 2378 ± 67 | 2410 ± 48 | 2.84 | 8.87 | 141 |
| 1000 | 2182 ± 47 | 2274 ± 91 | 12.80 | 8.88 | 138 |
| 1100 | 1838 ± 27 | 2165 ± 25 | 10.65 | 8.87 | 137 |
Fig. 8. SEM images taken from fracture surfaces of NbTaTiZr HEAs subjected to compressive failure: (a, b) sintered at 700 °C; (c, d) sintered at 1000 °C.
Fig. 9. Potentiodynamic polarization curves of NbTaTiZr HEAs sintered at different sintering temperatures, as well as Ti-6Al-4 V alloy and pure Ti for comparison in Hanks’ solution at 37 °C.
| Alloy | Ecorr (VSCE) | Ip (µA/cm2) | Epit (VSCE) |
|---|---|---|---|
| 700 °C | -0.520 | 0.139 | 0.671 |
| 800 °C | -0.500 | 0.146 | 0.537 |
| 900 °C | -0.446 | 0.369 | 1.110 |
| 1000 °C | -0.478 | 0.185 | - |
| 1100 °C | -0.498 | 0.240 | - |
| CPTi | -0.600 | 0.273 | - |
| Ti-6Al-4V | -0.640 | 0.146 | - |
Table 4 Electrochemical properties measured in Hanks' solution at 37 °C for NbTaTiZr HEAs, Ti-6Al-4 V alloy and commercial pure Ti.
| Alloy | Ecorr (VSCE) | Ip (µA/cm2) | Epit (VSCE) |
|---|---|---|---|
| 700 °C | -0.520 | 0.139 | 0.671 |
| 800 °C | -0.500 | 0.146 | 0.537 |
| 900 °C | -0.446 | 0.369 | 1.110 |
| 1000 °C | -0.478 | 0.185 | - |
| 1100 °C | -0.498 | 0.240 | - |
| CPTi | -0.600 | 0.273 | - |
| Ti-6Al-4V | -0.640 | 0.146 | - |
| [1] |
C.H. Chen, Y.J. Chen, J.J. Shen, Met. Mater. Int. 26 (2019) 617-629.
DOI URL |
| [2] |
Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, T.G. Nieh, Intermetallics 66 (2015) 67-76.
DOI URL |
| [3] |
M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano, Scr. Mater. 129 (2017) 65-68.
DOI URL |
| [4] |
Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Mater. Sci. Eng. A 491 (2008) 154-158.
DOI URL |
| [5] | B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, H.Z. Fu, Mater. Sci. Eng. A 498 (2008) 4 82-4 86. |
| [6] |
R. Feng, M.C. Gao, C. Zhang, W. Guo, J.D. Poplawsky, F. Zhang, J.A. Hawk, J. C. Neuefeind, Y. Ren, P.K. Liaw, Acta Mater 146 (2018) 280-293.
DOI URL |
| [7] |
S.Y. Chen, Y. Tong, K.K. Tseng, J.W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, P.K. Liaw, Scr. Mater. 158 (2019) 50-56.
DOI URL |
| [8] |
D.B. Miracle, O.N. Senkov, Acta Mater 122 (2017) 448-511.
DOI URL |
| [9] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
| [10] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kon- tis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Nature 563 (2018) 546-550.
DOI URL |
| [11] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
| [12] |
T. Nagase, M. Todai, T. Hori, T. Nakano, J. Alloys Compd. 753 (2018) 412-421.
DOI URL |
| [13] |
T. Hori, T. Nagase, M. Todai, A. Matsugaki, T. Nakano, Scr. Mater. 172 (2019) 83-87.
DOI URL |
| [14] |
S.P. Wang, J. Xu, Mater. Sci. Eng. C 73 (2017) 80-89.
DOI URL |
| [15] |
Y. Yuan, Y. Wu, Z. Yang, X. Liang, Z. Lei, H. Huang, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Mater. Res. Lett. 7 (2019) 225-231.
DOI |
| [16] |
V.T. Nguyen, M. Qian, Z. Shi, T. Song, L. Huang, J. Zou, Intermetallics 101 (2018) 39-43.
DOI URL |
| [17] |
Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, S.K. Chen, J. Alloys Compd. 481 (2009) 768-775.
DOI URL |
| [18] |
K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, J. Alloys Compd. 485 (2009) L31-L34.
DOI URL |
| [19] |
Q. Liu, G. Wang, X. Sui, Y. Liu, X. Li, J. Yang, J. Mater. Sci. Technol. 35 (2019) 2600-2607.
DOI URL |
| [20] |
X. Yao, Z. Zhang, Y.F. Zheng, C. Kong, M.Z. Quadir, J.M. Liang, Y.H. Chen, P. Munroe, D.L. Zhang, J. Mater. Sci. Technol. 33 (2017) 1023-1030.
DOI |
| [21] |
C. Zhu, Z. Li, C. Hong, P. Dai, J. Chen, Int. J. Refract. Met. Hard Mater. 93 (2020) 105357.
DOI URL |
| [22] |
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18 (2010) 1758-1765.
DOI URL |
| [23] |
Y. Zhang, X. Yang, P.K. Liaw, JOM 64 (2012) 830-838.
DOI URL |
| [24] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloys Compd. 509 (2011) 6043-6048.
DOI URL |
| [25] | O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Wood- ward, J.Mater. Sci. Technol. 47 (2012) 4062-4074. |
| [26] |
O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. 33 (2018) 3092-3128.
DOI URL |
| [27] |
G. Wang, Q. Liu, J. Yang, X. Li, X. Sui, Y. Gu, Y. Liu, Int. J. Refract. Met. Hard Mater. 84 (2019) 104988.
DOI URL |
| [28] |
P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, R.S. Kottada, Mater. Des. 134 (2017) 426-433.
DOI URL |
| [29] |
G.Q. Xie, D.V. Louzguine-Luzgin, S. Li, H. Kimura, A. Inoue, Intermetallics 17 (2009) 512-516.
DOI URL |
| [30] | Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. Technol. 41 (2006) 763-777. |
| [31] |
H.J. Qiu, G. Fang, Y. Wen, P. Liu, G.Q. Xie, X. Liu, S. Sun, J. Mater. Chem. A 7 (2019) 6499-6506.
DOI URL |
| [32] |
K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, K. Niihara, J. Alloys Compd. 495 (2010) 33-38.
DOI URL |
| [33] |
J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103 (2007) 41-46.
DOI URL |
| [34] |
W. Ji, Z. Fu, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, J. Alloys Compd. 589 (2014) 61-66.
DOI URL |
| [35] |
Z. Fu, W. Chen, S. Fang, D. Zhang, H. Xiao, D. Zhu, J. Alloys Compd. 553 (2013) 316-323.
DOI URL |
| [36] |
C.D. Gómez-Esparza, F.J. Baldenebro-López, C.R. Santillán-Ro-dríguez, I. Estrada-Guel, J.A. Matutes-Aquino, J.M. Herrera-Ramírez, R. Martínez-Sánchez, J. Alloys Compd. 615 (2014) S317-S323.
DOI URL |
| [37] |
S. Lv, Y. Zu, G. Chen, X. Fu, W. Zhou, J. Alloys Compd. 788 (2019) 1256-1264.
DOI URL |
| [38] |
S. Zhang, Z. Wang, H.J. Yang, J.W. Qiao, Z.H. Wang, Y.C. Wu, Intermetallics 121 (2020) 106699.
DOI URL |
| [39] |
Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, K.F. Yao, Mater. Sci. Eng. A 712 (2018) 380-385.
DOI URL |
| [40] |
S.P. Wang, J. Xu, Intermetallics 95 (2018) 59-72.
DOI URL |
| [41] |
T. Mimoto, J. Umeda, K. Kondoh, Powder Metall 59 (2016) 223-228.
DOI URL |
| [42] |
A.H. Cottrell, B. Bilby, Proc. Phys. Soc., London, Sect. A 62 (1949) 49-62.
DOI URL |
| [43] |
Z. Lei, Y. Wu, J. He, X. Liu, Z. Lu, Sci. Adv. 6 (2020) eaba7802.
DOI URL |
| [44] |
B.Q. Li, X. Lu, J. Mater. Eng. Perform. 28 (2019) 5616-5624.
DOI |
| [45] |
Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Intermetallics 84 (2017) 153-157.
DOI URL |
| [46] |
C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Intermetallics 62 (2015) 76-83.
DOI URL |
| [47] |
T.Y. Liu, J.C. Huang, W.S. Chuang, H.S. Chou, J.Y. Wei, C.Y. Chao, Y.C. Liao, J.S.C. Jang, Materials (Basel) 12 (2019) 3508.
DOI URL |
| [48] |
J.W. Yeh, Y.L. Chen, S.J. Lin, S.K. Chen, Mater. Sci. Forum 560 (2007) 1-9.
DOI URL |
| [49] |
Y. Long, H. Zhang, T. Wang, X. Huang, Y. Li, J. Wu, H. Chen, Mater. Sci. Eng. A 585 (2013) 408-414.
DOI URL |
| [50] |
B. Kang, J. Lee, H.J. Ryu, S.H. Hong, Mater. Sci. Eng. A 712 (2018) 616-624.
DOI URL |
| [51] |
H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, J. Alloys Compd. 696 (2017) 1139-1150.
DOI URL |
| [52] | R. Labusch, Phys. Status Solidi 41 (1970) 659-669. |
| [53] |
R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, K.V. Rajulapati, Acta Mater 125 (2017) 58-68.
DOI URL |
| [54] |
H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater 61 (2013) 2769-2782.
DOI URL |
| [55] |
S. Sun, C. Ding, Y. Ren, X. Tan, H. Shang, B. Ma, Comput. Mater. Sci. 170 (2019) 109159.
DOI URL |
| [1] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
| [2] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
| [3] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
| [4] | Jinxue Ding, Xiaokang Ma, Xiaomeng Fan, Jimei Xue, Fang Ye, Laifei Cheng. Failure behavior of interfacial domain in SiC-matrix based composites [J]. J. Mater. Sci. Technol., 2021, 88(0): 1-10. |
| [5] | Wenming Jiang, Junwen Zhu, Guangyu Li, Feng Guan, Yang Yu, Zitian Fan. Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting [J]. J. Mater. Sci. Technol., 2021, 88(0): 119-131. |
| [6] | Fengying Zhang, Panpan Gao, Hua Tan, Yao Li, Yongnan Chen, Min Mei, Adam T. Clare, Lai-Chang Zhang. Tailoring grain morphology in Ti-6Al-3Mo through heterogeneous nucleation in directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 88(0): 132-142. |
| [7] | Yong-Kang Li, Min Zha, Jian Rong, Hai-long Jia, Zhong-Zheng Jin, Hong-Min Zhang, Pin-Kui Ma, Hong Xu, Ting-Ting Feng, Hui-Yuan Wang. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 88(0): 215-225. |
| [8] | Hongyu Chen, Dongdong Gu, Liang Deng, Tiwen Lu, Uta Kühn, Konrad Kosiba. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure [J]. J. Mater. Sci. Technol., 2021, 89(0): 242-252. |
| [9] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
| [10] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
| [11] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
| [12] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
| [13] | Jingfeng Zou, Lifeng Ma, Weitao Jia, Qichi Le, Gaowu Qin, Yuan Yuan. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 228-238. |
| [14] | Sajian Wu, Jing Li, Changji Li, Yiyi Li, Liangyin Xiong, Shi Liu. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 49-57. |
| [15] | Zijian Yu, Xi Xu, Adil Mansoor, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Precipitate characteristics and their effects on the mechanical properties of as-extruded Mg-Gd-Li-Y-Zn alloy [J]. J. Mater. Sci. Technol., 2021, 88(0): 21-35. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
