J. Mater. Sci. Technol. ›› 2021, Vol. 90: 159-167.DOI: 10.1016/j.jmst.2021.02.034
• Research Article • Previous Articles Next Articles
Dae Cheol Yanga, Yong Hee Job, Yuji Ikedac, Fritz Körmannd,e, Seok Su Sohna,*(
)
Received:2020-12-16
Revised:2021-01-23
Accepted:2021-02-03
Published:2021-11-05
Online:2021-11-05
Contact:
Seok Su Sohn
About author:* E-mail address: sssohn@korea.ac.kr (S.S. Sohn).Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy[J]. J. Mater. Sci. Technol., 2021, 90: 159-167.
Fig. 1. Simulation cells with 54 atoms used in the present study. Spheres with different colors correspond to different elements. Among the ten investigated special quasi-random structure (SQS) configurations for each phase, one configuration is shown.
| Volume (Å3/atom) | Energy (meV/atom) | |||
|---|---|---|---|---|
| fcc | hcp | fcc | hcp | |
| CrCoNi | 10.92 | 10.91 | (0) | -7 |
| VCoNi | 11.41 | 11.41 | (0) | +6 |
Table 1 Computed equilibrium volumes and energies of VCoNi and CrCoNi at 0 K obtained by fitting to the Vinet equation of state. The energies are referenced to that of the fcc phase (shown in parentheses).
| Volume (Å3/atom) | Energy (meV/atom) | |||
|---|---|---|---|---|
| fcc | hcp | fcc | hcp | |
| CrCoNi | 10.92 | 10.91 | (0) | -7 |
| VCoNi | 11.41 | 11.41 | (0) | +6 |
Fig. 2. Electron backscatter diffraction (EBSD) inverse pole figure (IPF) maps of the VCoNi alloy annealed at (a) 1273 K for 1 h, (b) 1223 K for 1 h, (c) 1173 K for 1 h, and (d) 1173 K for 10 min.
Fig. 3. Tensile properties at room- and cryogenic-temperatures for the annealed VCoNi alloy: (a) Engineering stress-strain curves, (b) Strain-hardening rate curves.
| Temperature | Specimen | Yield strength (MPa) | Tensile strength (MPa) | Elongation (%) |
|---|---|---|---|---|
| 298 K | D3 | 988 ± 31 | 1357 ± 24 | 38.4 ± 4.4 |
| D5 | 710 ± 22 | 1172 ± 18 | 48.7 ± 3.8 | |
| D10 | 627 ± 17 | 1140 ± 11 | 52.0 ± 4.8 | |
| D26 | 501 ± 16 | 973 ± 7 | 70.0 ± 5.9 | |
| 77 K | D3 | 1217 ± 30 | 1703 ± 24 | 42.1 ± 2.4 |
| D5 | 960 ± 14 | 1551 ± 11 | 56.7 ± 3.4 | |
| D10 | 895 ± 19 | 1474 ± 8 | 58.7 ± 4.1 | |
| D26 | 710 ± 8 | 1271 ± 5 | 75.3 ± 5.5 |
Table 2 Tensile properties at room and cryogenic temperatures for the VCoNi alloy annealed under the given conditions.
| Temperature | Specimen | Yield strength (MPa) | Tensile strength (MPa) | Elongation (%) |
|---|---|---|---|---|
| 298 K | D3 | 988 ± 31 | 1357 ± 24 | 38.4 ± 4.4 |
| D5 | 710 ± 22 | 1172 ± 18 | 48.7 ± 3.8 | |
| D10 | 627 ± 17 | 1140 ± 11 | 52.0 ± 4.8 | |
| D26 | 501 ± 16 | 973 ± 7 | 70.0 ± 5.9 | |
| 77 K | D3 | 1217 ± 30 | 1703 ± 24 | 42.1 ± 2.4 |
| D5 | 960 ± 14 | 1551 ± 11 | 56.7 ± 3.4 | |
| D10 | 895 ± 19 | 1474 ± 8 | 58.7 ± 4.1 | |
| D26 | 710 ± 8 | 1271 ± 5 | 75.3 ± 5.5 |
Fig. 4. ECCI micrographs of the tensile-deformed microstructures for the VCoNi alloy annealed at 1173 K for 1 h at sequential plastic strains: (a1) e=0.05, (a2) e=0.1, (a3) e=0.2, and (a4) e=0.4 at 298 K; (b1) e=0.05, (b2) e=0.1, (b3) e=0.2, and (b4) e=0.4 at 77 K.
Fig. 5. Charpy impact energy as a function of test temperature for the VCoNi annealed at 1173 K for 1 h. SEM fractographs of the Charpy impact specimen fractured at 77 K and 298 K, showing a ductile fracture.
Fig. 7. EBSD KAM maps for D10, 35% deformation at (a1) 298 K and (b1) 77 K. Selective areas identifying the distribution of deformation structure by (a2-a4) IPF, Schmid factor, GND maps in (a1), and (b2-b4) IPF, Schmid factor, GND maps in (b1). Line profile data on L1 (298 K) and L2 (77 K) for each map are shown below.
| Alloy | σa (MPa) | C (K) | σb (MPa) |
|---|---|---|---|
| VCoNi [ | 614.3 | 203.7 | 474.1 |
| CrCoNi [ | 489 | 228 | 167 |
| CrMnFeCoNi [ | 423 | 180 | 109 |
Table 3 Calculated constants describing the thermal and athermal parameters in Eq. (3).
| Alloy | σa (MPa) | C (K) | σb (MPa) |
|---|---|---|---|
| VCoNi [ | 614.3 | 203.7 | 474.1 |
| CrCoNi [ | 489 | 228 | 167 |
| CrMnFeCoNi [ | 423 | 180 | 109 |
| [1] |
X. Chang, M. Zeng, K. Liu, L. Fu, Adv. Mater. 32 (2020) 1907226.
DOI URL |
| [2] |
Y. Ye, Q. Wang, J. Lu, C. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
| [3] |
D.B. Miracle, O.N. Senkov, Acta Mater 122 (2017) 448-511.
DOI URL |
| [4] | Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, H.R. Ammar, Met. Mater. Int. (2019) 1-35. |
| [5] |
S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31 (2019) 1807142.
DOI URL |
| [6] | B. Yin, F. Maresca, W. Curtin, Acta Mater 188 (2020) 4 86-4 91. |
| [7] | S.S. Sohn, D.G. Kim, Y.H. Jo, A.K. da Silva, W. Lu, A.J. Breen, B. Gault, D. Ponge, Acta Mater (2020). |
| [8] |
H. Luo, S.S. Sohn, W. Lu, L. Li, X. Li, C.K. Soundararajan, W. Krieger, Z. Li, D. Raabe, Nat. Commun. 11 (2020) 1-8.
DOI URL |
| [9] |
A. Gali, E.P. George, Intermetallics 39 (2013) 74-78.
DOI URL |
| [10] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
| [11] | G.T. Lee, J.W. Won, K.R. Lim, M. Kang, H.J. Kwon, Y.S. Na, Y.S. Choi, Met. Mater. Int. (2020) 1-10. |
| [12] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E. George, Acta Mater 128 (2017) 292-303.
DOI URL |
| [13] |
M. Yang, L. Zhou, C. Wang, P. Jiang, F. Yuan, E. Ma, X. Wu, Scr. Mater. 172 (2019) 66-71.
DOI URL |
| [14] |
D.G. Kim, Y.H. Jo, J. Yang, W.M. Choi, H.S. Kim, B.J. Lee, S.S. Sohn, S. Lee, Scr. Mater. 171 (2019) 67-72.
DOI URL |
| [15] | C. Moussa, M. Bernacki, R. Besnard, N. Bozzolo, IOP Conference Series: Materi- als Science and Engineering, IOP Publishing, 2015 012038. |
| [16] |
H. Gao, Y. Huang, Scr. Mater. 48 (2003) 113-118.
DOI URL |
| [17] |
A.J. Wilkinson, D. Randman, Philos. Mag. 90 (2010) 1159-1177.
DOI URL |
| [18] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746.
DOI URL |
| [19] | P. Denteneer, W. Van Haeringen, J. Phys. C 20 (1987) L883 L887. |
| [20] |
A. Zunger, S.H. Wei, L. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65 (1990) 353-356.
PMID |
| [21] | G. Kresse, J. Non-Cryst. Solids 192 (1995) 222-229. |
| [22] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
| [23] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
| [24] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
| [25] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
| [26] |
M. Methfessel, A. Paxton, Phys. Rev. B 40 (1989) 3616-3621.
PMID |
| [27] |
D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Acta Mater 100 (2015) 90-97.
DOI URL |
| [28] |
P. Vinet, J.R. Smith, J. Ferrante, J.H. Rose, Phys. Rev. B 35 (1987) 1945-1953.
PMID |
| [29] |
A. Otero-de-la-Roza, V.Luaña, Comput. Phys. Commun. 182 (2011) 1708-1720.
DOI URL |
| [30] |
V. Moruzzi, J. Janak, K. Schwarz, Phys. Rev. B 37 (1988) 790-799.
PMID |
| [31] |
S. Sun, Y. Tian, H. Lin, X. Dong, Y. Wang, Z. Zhang, Z. Zhang, Mater. Des. 133 (2017) 122-127.
DOI URL |
| [32] |
S. Sun, Y. Tian, H. Lin, H. Yang, X. Dong, Y. Wang, Z. Zhang, Mater. Sci. Eng. A 712 (2018) 603-607.
DOI URL |
| [33] |
S.S. Sohn, H. Song, B.C. Suh, J.H. Kwak, B.J. Lee, N.J. Kim, S. Lee, Acta Mater 96 (2015) 301-310.
DOI URL |
| [34] |
E. Welsch, D. Ponge, S.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaef- ferer, D.Raabe, Acta Mater. 116 (2016) 188-199.
DOI URL |
| [35] | M. Kang, J.W. Won, K.R. Lim, S.H. Park, S.M. Seo, Y.S. Na, Korean J. Met. Mater. 55 (2017) 732-738. |
| [36] | B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 1-8. |
| [37] |
S. Xia, M. Gao, Y. Zhang, Mater. Chem. Phys. 210 (2018) 213-221.
DOI URL |
| [38] |
Y.H. Jo, D.G. Kim, M.C. Jo, K.Y. Doh, S.S. Sohn, D. Lee, H.S. Kim, B.J. Lee, S. Lee, J. Alloys Compd. 785 (2019) 1056-1067.
DOI URL |
| [39] |
M.J. Jang, H. Kwak, Y.W. Lee, Y. Jeong, J. Choi, Y.H. Jo, W.M. Choi, H.J. Sung, E.Y. Yoon, S. Praveen, Met. Mater. Int. 25 (2019) 277-284.
DOI |
| [40] | Y. Kim, H.K. Park, P. Asghari-Rad, J. Jung, J. Moon, H.S. Kim, Met. Mater. Int.(2020) 1-10. |
| [41] |
W. Liu, Z. Lu, J. He, J. Luan, Z. Wang, B. Liu, Y. Liu, M. Chen, C. Liu, Acta Mater. 116 (2016) 332-342.
DOI URL |
| [42] |
C.C. Tasan, Y. Deng, K.G. Pradeep, M. Yao, H. Springer, D. Raabe, JOM 66 (2014) 1993-2001.
DOI URL |
| [43] |
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94 (2015) 124-133.
DOI URL |
| [44] |
S. Zhao, G.M. Stocks, Y. Zhang, Acta Mater. 134 (2017) 334-345.
DOI URL |
| [45] |
J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 8919-8924.
DOI URL |
| [46] |
H. Huang, X. Li, Z. Dong, W. Li, S. Huang, D. Meng, X. Lai, T. Liu, S. Zhu, L. Vitos, Acta Mater. 149 (2018) 388-396.
DOI URL |
| [47] |
C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, M. Ghazisaeidi, Nat. Commun. 9 (2018) 1-9.
DOI URL |
| [48] |
X. Zhang, B. Grabowski, F. Körmann, A.V. Ruban, Y. Gong, R.C. Reed, T. Hickel, J. Neugebauer, Phys. Rev. B 98 (2018) 224106.
DOI URL |
| [49] |
A. Reyes-Huamantinco, P. Puschnig, C. Ambrosch-Draxl, O.E. Peil, A.V. Ruban, Phys. Rev. B 86 (2012) 060201.
DOI URL |
| [50] |
L. Saraf, Microsc. Microanal. 17 (2011) 424-425.
DOI URL |
| [51] | S. Goel, R. Jayaganthan, I. Singh, D. Srivastava, G. Dey, N. Saibaba, Acta Metall. Sin.-Eng. Lett. 28 (2015) 837-846. |
| [52] |
B. Gruber, I. Weißensteiner, T. Kremmer, F. Grabner, G. Falkinger, A. Schökel, F. Spieckermann, R. Schäublin, P.J. Uggowitzer, S. Pogatscher, Mater. Sci. Eng. A 795 (2020) 139935.
DOI URL |
| [53] |
J.D. Yoo, K.T. Park, Mater. Sci. Eng. A 496 (2008) 417-424.
DOI URL |
| [54] |
Z. Xu, H.J. Roven, Z. Jia, Mater. Sci. Eng. A 648 (2015) 350-358.
DOI URL |
| [55] |
J. Yoo, S. Hwang, K.T. Park, Metall. Mater. Trans. A 40 (2009) 1520-1523.
DOI URL |
| [56] | R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, Philos. Mag. 7 (1962) 45-58. |
| [57] | D. Broek, Springer Science & Business Media, 2012. |
| [58] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater 81 (2014) 428-441.
DOI URL |
| [59] | G.E. Dieter, D.J. Bacon, New York, 1986. |
| [60] |
H.D. Dietze, Zeitschrift Fur Physik 132 (1952) 107-110.
DOI URL |
| [61] |
Y. Zhao, T. Nieh, Intermetallics 86 (2017) 45-50.
DOI URL |
| [1] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
| [2] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
| [3] | W.-W. Xu, G.H. Yin, Z.Y. Xiong, Q. Yu, T.Q. Gang, L.J. Chen. Plasticity-induced stacking fault behaviors of γ’ precipitates in novel CoNi-based superalloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 20-29. |
| [4] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
| [5] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
| [6] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
| [7] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
| [8] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
| [9] | S.Y. Wang, Y. Sun, C.Y. Cui, X.F. Sun, Y.Z. Zhou, Y.M. Ma, H.L. An. Effect of post-bond heat treatment on the microstructure and high temperature mechanical property of a TLP bonded γ′-strengthened co-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 244-258. |
| [10] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
| [11] | Yin Du, Xuhui Pei, Zhaowu Tang, Fan Zhang, Qing Zhou, Haifeng Wang, Weimin Liu. Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 194-204. |
| [12] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
| [13] | Liying Zhou, Wenxiong Chen, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Dynamic recrystallization behavior and interfacial bonding mechanism of 14Cr ferrite steel during hot deformation bonding [J]. J. Mater. Sci. Technol., 2020, 43(0): 92-103. |
| [14] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Tan Wang, Chen Chen, Jianzhong Jiang, Tingwei Hu, Fushan Li. Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures [J]. J. Mater. Sci. Technol., 2020, 57(0): 153-158. |
| [15] | Xinglong An, Hao Zhang, Song Ni, Xiaoqin Ou, Xiaozhou Liao, Min Song. Effects of temperature and alloying content on the phase transformation and {10$\bar{1}$1} twinning in Zr during rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 76-80. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
