J. Mater. Sci. Technol. ›› 2021, Vol. 61: 85-92.DOI: 10.1016/j.jmst.2020.05.054
• Research Article • Previous Articles Next Articles
Zhihua Yua,b, Huimei Zhangb, Jianying Huanga,*(), Shuhui Lia, Songnan Zhangb, Yan Chengb,c, Jiajun Maoa, Xiuli Dongb, Shouwei Gaob, Shanchi Wangb, Zhong Chenc, Yaoxing Jiangb, Yuekun Laia,*(
)
Received:
2020-04-30
Revised:
2020-05-19
Accepted:
2020-05-27
Published:
2021-01-20
Online:
2021-01-20
Contact:
Jianying Huang,Yuekun Lai
Zhihua Yu, Huimei Zhang, Jianying Huang, Shuhui Li, Songnan Zhang, Yan Cheng, Jiajun Mao, Xiuli Dong, Shouwei Gao, Shanchi Wang, Zhong Chen, Yaoxing Jiang, Yuekun Lai. Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting[J]. J. Mater. Sci. Technol., 2021, 61: 85-92.
Scheme 2. This schematic diagram showed the whole preperation process for various weaved fabric including (a) the prepation of superhydrophobic yarns, (b) fabrication of various types of fabric as well as (c) copper particles selective deposition on weaved fabric.
Fig. 1. The behavior of the fog droplets when it colloids, decelerates and spreads on a smooth glass sheet (a) and fabric with rough surface (b). One typical droglet was magnified for clear view. The scale bar represents 2 cm and all images have the same scale.
Fig. 2. The effects of copper coating on fog harvesting. (a) The fog harvesting behavior on a SHB-SHL patterned fabric from 0 min to 10 min. After 10 min, the SHB-SHL patterned fabric captured some tiny fog droplets. (b) The fog harvesting behavior on a Cu-SHB-SHL patterned fabric from 0 min to 10 min. After 10 min, the Cu-SHB-SHL patterned fabric captured more tiny fog droplets and some fog droplets grow bigger. (c) and (d) are schematic diagrams of the dynamic collection process of SHB-SHL and Cu-SHB-SHL, respectively. Inserted image is a digital photo of Namib desert beetle (copyright 2001, Nature) [5]. The water in the sprayer was dyed with methyl blue for better viewing. The scale bars are 3 mm.
Fig. 3. (a) Illustration of the moving behavior when the droplet on a surface with two different wettabilities. (b) The distribution of water droplets when water droplets fall on the surface of a fabric with two different wettabilities. (c)-(f) Scheme and condensation dynamics of Cu-SHL, Cu-SHB, Cu-SHL-SHB and Cu-SHB-SHL patterned fabric from 0 min to 60 min. The water in the sprayer was dyed with methyl blue. The scale bars are 2 mm.
Fig. 4. The effects of distribution of different wettabilities on fog harvesting. (a), (b), (c) and (d) are schematic diagrams of the dynamic fog harvesting process of Cu-SHL, Cu-SHB, Cu-SHL-SHB and Cu-SHB-SHL, respectively.
Fig. 5. SEM of the fibers with different treatment processes. (a) Untreated fibers. (b) After PDMS and ZnO coating. (c) The superhydrophilic fibers with in-situ copper deposition. (d) The superhydrophobic fibers after in-situ copper deposition. (e) EDS spectrum and atomic ratio of the Cu-SHL-SHB patterned fabric. (f) Cu distribution on the Cu-SHL-SHB patterned fabric. (g) Digital photo of the Cu-SHB-SHL patterned fabric. The scale bar is 2 mm.
Fig. 6. (a) The lab-made fog harvest device: a fog flow was produced by the humidifier to the prepared samples to harvest water and transport water into the container below. (b) WHR value of all samples. (c) WHW (water harvesting weight) tests of 8 samples during a period of 8 h. (d) WHR on the sample of Cu-SHB-SHL fabric for 10 cycles of fog-harvesting processes. Insets in d are optical WCAs images on the superhydrophobic areas. The size of all samples are 3 cm × 3 cm.
[1] |
M.M. Mekonnen, A.Y. Hoekstra, Sci. Adv. 2 (2016) e1500323.
DOI URL PMID |
[2] | T. Boningari, S.N.R. Inturi, M. Suidan, P.G. Smirniotis, J. Mater. Sci. Technol. 31 (2018) 1494-1502. |
[3] |
H. Yang, J.R. Thompson, R.J. Flower, Nature 525 (2015), 455-455.
URL PMID |
[4] |
J.T. Overpeck, Nature 503 (2013) 350-351.
DOI URL PMID |
[5] |
A.R. Parker, C.R. Lawrence, Nature 414 (2001) 33-34.
DOI URL PMID |
[6] | F. Zhang, C.L. Zhang, L. Song, R.C. Zeng, S.Q. Li, H.Z. Cui, J. Mater. Sci. Technol. 31 (2015) 1139-1143. |
[7] |
J. Ju, H. Bai, Y.M. Zheng, T. Zhao, R. Fang, L. Jiang, Nat. Commun. 3 (2012) 1247-1253.
URL PMID |
[8] |
S. Biswas, S.H. Alavi, B. Sedai, F.D. Blum, S.P. Harimkar, J. Mater. Sci. Technol. 35 (2019) 295-302.
DOI URL |
[9] |
Y.M. Zheng, H. Bai, Z.B. Huang, X.L. Tian, F.Q. Nie, Y. Zhao, J. Zhai, L. Jiang, Nature 463 (2010) 640-643.
DOI URL PMID |
[10] |
Y.Z. Chen, A.X. Li, Q. Li, X.M. Hou, L.N. Wang, Z.H. Huang, J. Mater. Sci. Technol. 34 (2018) 955-960.
DOI URL |
[11] |
Y. Cheng, H. Yang, Y. Yang, J.Y. Huang, K. Wu, Z. Chen, X.Q. Wang, C.J. Lin, Y.K. Lai, J. Mater. Chem. B 6 (2018) 1862-1886.
DOI URL PMID |
[12] |
C. Li, Y. Liu, C. Gao, X. Li, Y. Xing, Y.M. Zheng, ACS Appl. Mater. Interfaces 11 (2019) 4507-4513.
URL PMID |
[13] |
M.Y. Cao, J. Xiao, C. Yu, K. Li, L. Jiang, Small 11 (2015) 4379-4384.
DOI URL PMID |
[14] |
X.M. Qiu, L.N. Wang, L.Z. Fan, J. Mater. Chem. A 6 (2018) 7835-7841.
DOI URL |
[15] |
H. Bai, L. Wang, J. Ju, R. Sun, Y. Zheng, L. Jiang, Adv. Mater. 26 (2014) 5025-5030.
DOI URL |
[16] |
S.N. Zhang, J.Y. Huang, Z. Chen, Y.K. Lai, Small 13 (2017), 1602992.
DOI URL |
[17] |
Y.Y. Yang, X. Wang, F. Yang, L.N. Wang, D.C. Wu, Adv. Mater. 30 (2018), 1707071.
DOI URL |
[18] |
L.Y. Cui, H.P. Liu, W.L. Zhang, Z.Z. Han, M.X. Deng, R.C. Zeng, S.Q. Li, Z.L. Wang, J. Mater. Sci. Technol. 33 (2017) 1263-1271.
DOI URL |
[19] |
L. Guo, W. Wu, Y.F. Zhou, F. Zhang, R.C. Zeng, J.M. Zeng, J. Mater. Sci. Technol. 34 (2018) 1455-1466.
DOI URL |
[20] | Z.P. Wu, Q.F. Xu, J.N. Wang, J. Ma, J. Mater. Sci. Technol. 26 (2010) 20-26. |
[21] | J.H. Zheng, J.L. Song, Q. Jiang, J.S. Lian, J. Mater. Sci. Technol. 28 (2012) 103-108. |
[22] | J.K. Zhang, W.H. Zhou, K.L. Lin, F.S. Chen, J. Mater. Sci. Technol. 35 (2019) 336-343. |
[23] |
J. Ju, Y.M. Zheng, L. Jiang, Acc. Chem. Res. 47 (2014) 2342-2352.
DOI URL PMID |
[24] |
S.G. Naidu, J. Insect Physiol. 47 (2001) 1429-1440.
DOI URL PMID |
[25] |
X.L. Dong, S.W. Gao, J.Y. Huang, S.H. Li, T.X. Zhu, Y. Cheng, Y. Zhao, Z. Chen, Y.K. Lai, J. Mater. Chem. A 7 (2019) 2122-2128.
DOI URL |
[26] |
C.Y. Wen, H.S. Guo, H.Y. Bai, T. Xu, M. Liu, D. Yang, Y.N. Zhu, W.Q. Zhao, J.M. Zhang, M.Y. Cao, L. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 34330-34337.
DOI URL PMID |
[27] |
Y. Xing, W. Shang, Q. Wang, S. Feng, Y. Hou, Y.M. Zheng, ACS Appl. Mater. Interfaces 11 (2019) 10951-10958.
URL PMID |
[28] |
S. Zhang, J. Huang, Z. Chen, S. Yang, Y. Lai, J. Mater. Chem. A 7 (2019) 38-63.
DOI URL |
[29] |
M.Z. Ge, J.S. Cai, J. Iocozzia, C.Y. Cao, J.Y. Huang, X.N. Zhang, J.L. Shen, S.C. Wang, S.N. Zhang, K.Q. Zhang, Y.K. Lai, Z.Q. Lin, Int. J. Hydrogen Energy 42 (2017) 8418-8449.
DOI URL |
[30] |
K. Gerasopoulos, W.L. Luedeman, E. Olceroglu, M. McCarthy, J.J. Benkoski, ACS Appl. Mater. Interfaces 10 (2018) 4066-4076.
URL PMID |
[31] |
N.K. Kim, D.H. Kang, H. Eom, H.W. Kang, Appl. Surf. Sci. 470 (2019) 161-167.
DOI URL |
[32] |
Y. Gao, J. Wang, W. Xia, X. Mou, Z.S. Cai, ACS Sustain. Chem. Eng. 6 (2018) 7216-7220.
DOI URL |
[33] |
H. Zhu, F. Yang, J. Li, Z. Guo, Chem. Commun. 52 (2016) 12415-12417.
DOI URL |
[34] |
Y.G. Fan, J.X. Fan, C. Wang, J. Mater. Sci. Technol. 35 (2019) 2163-2168.
DOI URL |
[35] |
X.K. Wang, J. Zeng, X.Q. Yu, C.H. Liang, Y.F. Zhang, Appl. Surf. Sci. 465 (2019) 986-994.
DOI URL |
[36] |
Y. Lai, J. Huang, Z. Cui, M. Ge, K. Zhang, Z. Chen, L. Chi, Small 12 (2016) 2203.
URL PMID |
[37] |
S. Wang, M. Liu, Y. Feng, Y. Bu, S.H. Huynh, T.W. Ng, F. Gu, A. Yu, X. Jiang, J. Mater. Chem. A 5 (2017) 21422-21428.
DOI URL |
[38] |
J. Sun, C. Chen, J. Song, J. Liu, X. Yang, J. Liu, X. Liu, Y. Lu, J. Colloid Interface Sci. 535 (2019) 100-110.
URL PMID |
[39] |
Y.Z. Chen, A.X. Li, M. Jin, L.N. Wang, Z.H. Huang, J. Mater. Sci. Technol. 33 (2017) 728-733.
DOI URL |
[40] |
X. Yang, J. Song, J. Liu, X. Liu, Z. Jin, Sci. Rep. 7 (2017) 8816-8828.
URL PMID |
[41] |
B. Wang, Y. Zhang, W. Liang, G. Wang, Z. Guo, W. Liu, J. Mater. Chem. A 2 (2014) 7845-7852.
DOI URL |
[42] |
S.Y. Wu, X.L. Wu, P.K. Chu, J. Mater. Sci. Technol. 32 (2016) 182-188.
DOI URL |
[43] |
T.X. Zhu, S.H. Li, J.Y. Huang, M. Mihailiasa, Y.K. Lai, Mater. Des. 134 (2017) 342-351.
DOI URL |
[1] | Jianglong Yan, Dandan Xia, Pan Xiong, Yangyang Li, Wenhao Zhou, Qiyao Li, Pei Wang, Yufeng Zheng, Yan Cheng. Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities [J]. J. Mater. Sci. Technol., 2021, 71(0): 31-43. |
[2] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[3] | Tan Wan, Yuan Liu, Canxu Zhou, Xiang Chen, Yanxiang Li. Fabrication, properties, and applications of open-cell aluminum foams: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 11-24. |
[4] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[5] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[6] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[7] | Dawei Guo, Chi Tat Kwok. A corrosion study on W-Cu alloys in sodium chloride solution at different pH [J]. J. Mater. Sci. Technol., 2021, 64(0): 38-56. |
[8] | Chaolin Tan, Youxiang Chew, Guijun Bi, Di Wang, Wenyou Ma, Yongqiang Yang, Kesong Zhou. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72(0): 217-222. |
[9] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[10] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[11] | Gongcheng Yao, Chezheng Cao, Shuaihang Pan, Jie Yuan, Igor De Rosa, Xiaochun Li. Thermally stable ultrafine grained copper induced by CrB/CrB2 microparticles with surface nanofeatures via regular casting [J]. J. Mater. Sci. Technol., 2020, 58(0): 55-62. |
[12] | Jun-Tao Luo, Guo-Long Zang, Chuang Hu. An efficient 3D ordered mesoporous Cu sphere array electrocatalyst for carbon dioxide electrochemical reduction [J]. J. Mater. Sci. Technol., 2020, 55(0): 95-106. |
[13] | Tran Thang Q., Yoong Lee Jeremy Kong, Amutha Chinnappan, Loc Nguyen Huu, Tran T. Long, Dongxiao Ji, W.A.D.M. Jayathilaka, Kumar Vishnu Vijay, Seeram Ramakrishna. High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables [J]. J. Mater. Sci. Technol., 2020, 42(0): 46-53. |
[14] | Huabo Li, Yuanyuan Cui, Yixin Liu, Lu Zhang, Quan Zhang, Juhua Zhang, Wei-Lin Dai. Highly efficient Ag-modified copper phyllosilicate nanotube: Preparation by co-ammonia evaporation hydrothermal method and application in the selective hydrogenation of carbonate [J]. J. Mater. Sci. Technol., 2020, 47(0): 29-37. |
[15] | Yujie Qiang, Hao Li, Xijian Lan. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52(0): 63-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||