J. Mater. Sci. Technol. ›› 2021, Vol. 87: 60-73.DOI: 10.1016/j.jmst.2021.01.043
• Research Article • Previous Articles Next Articles
Sam Yaw Anamana, Solomon Ansaha, Hoon-Hwe Choa,*(), Min-Gu Job,c, Jin-Yoo Suhb, Minjung Kangd, Jong-Sook Leee, Sung-Tae Hongf, Heung Nam Hanc,**(
)
Received:
2020-11-05
Revised:
2021-01-17
Accepted:
2021-01-25
Published:
2021-10-10
Online:
2021-03-11
Contact:
Hoon-Hwe Cho,Heung Nam Han
About author:
* E-mail addresses: hhcho@hanbat.ac.kr (H.-H. Cho).Sam Yaw Anaman, Solomon Ansah, Hoon-Hwe Cho, Min-Gu Jo, Jin-Yoo Suh, Minjung Kang, Jong-Sook Lee, Sung-Tae Hong, Heung Nam Han. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy[J]. J. Mater. Sci. Technol., 2021, 87: 60-73.
Fig. 1. (a) Schematic diagram of the FSP process, (b) photograph of the overview of the FSPed HEA. WD, TD, and ND indicate the welding, transverse and normal directions of the FSW process.
Fig. 2. (a) Schematic diagram of the FSPed HEA showing the sectioned areas for the electrochemical tests, (b) schematic diagram of the electrochemical test set up. CE, RE, and WE are counter, reference, and working electrodes, respectively. (DAQ: data acquisition).
Fig. 3. (a) Schematic of the computational domain showing the dimensions, governing equation as well as the boundary conditions. The red line represents the anodic surface (i.e. the active region during pitting corrosion), while the blue line represents the cathodic surface (or the non-corroding surface). (b) Schematic of the mesh system along with the boundary conditions used for the ALE method in COMSOL Multiphysics. The reference frame has fixed (X,Y) coordinates while the spatial frame has (x,y) coordinates moving with time.
Fig. 4. Microstructural features of HEA BM: (a) IPF-ND, (b) IQ (overlaid with grain boundaries), (c) KAM, (d) GOS maps, (e) IQ (overlaid with twin boundaries) (f) misorientation-angle distribution (the blue line represents Mackenzie random distribution and (g) {111} pole figure.
Fig. 5. (a) Optical micrograph of the cross-section of the FSPed HEA after etching showing the shoulder width, plunge depth as well as the various zones resulted from the FSP. The green dashed lines indicate the boundary between the SZ and TMAZ and the numbered-red square shapes also mark the locations for the EBSD and EDS analyses. The result of the EDS analysis is presented in Table 1. (b) Calculated equilibrium phase mole fraction versus temperature for the CrMnFeCoNi HEA using ThermoCalc. The region marked with a gray rectangle within the FCC region indicates the estimated peak temperature range (~1016 °C to ~1265 °C) during the FSP of the HEA. (c) XRD patterns of the FCC phases in regions 1, 5, and 2 in Fig. 5(a), corresponding to the BM, RS-TMAZ, and Top SZ of the FSPed HEA, respectively.
Region | Cr | Mn | Fe | Co | Ni |
---|---|---|---|---|---|
1. BM | 20.39 | 19.79 | 20.17 | 19.90 | 19.74 |
2. Top SZ | 20.40 | 19.81 | 20.06 | 20.05 | 19.69 |
3. Middle SZ | 20.39 | 19.83 | 20.08 | 20.01 | 19.66 |
4. Bottom SZ | 20.36 | 19.90 | 20.12 | 19.95 | 19.66 |
5. RS-TMAZ | 20.38 | 19.82 | 20.21 | 19.95 | 19.63 |
6. AS-TMAZ | 20.48 | 19.81 | 20.03 | 19.95 | 19.73 |
Table 1 Chemical compositions (at.%) of the regions marked in Fig. 5(a).
Region | Cr | Mn | Fe | Co | Ni |
---|---|---|---|---|---|
1. BM | 20.39 | 19.79 | 20.17 | 19.90 | 19.74 |
2. Top SZ | 20.40 | 19.81 | 20.06 | 20.05 | 19.69 |
3. Middle SZ | 20.39 | 19.83 | 20.08 | 20.01 | 19.66 |
4. Bottom SZ | 20.36 | 19.90 | 20.12 | 19.95 | 19.66 |
5. RS-TMAZ | 20.38 | 19.82 | 20.21 | 19.95 | 19.63 |
6. AS-TMAZ | 20.48 | 19.81 | 20.03 | 19.95 | 19.73 |
Fig. 6. EBSD IPF-ND maps of (a) region 2 (as Top SZ), (b) region 3 (as Middle SZ), and (c) region 4 marked by red squares in Fig. 5(a). (d) Shear processed zone (SPZ) and (e) region below the SPZ marked by black squares in region 4, which are shown at higher magnifications.
Fig. 7. Microstructural features of the (a1?e1) Top SZ, (a2?e2) Middle SZ, (a3?e3) SPZ, and (a4?e4) region below the SPZ: (a1?4) KAM, (b1?4) GOS, (c1?4) IQ (overlaid with grain boundaries) maps, (d1?4) misorientation-angle distribution (the blue line represents Mackenzie random distribution), and (e1?4) {111} pole figure (red triangle represents the dominant γ-fiber component of the shear texture).
Fig. 8. Microstructural features of (a1-f1) RS-TMAZ and (a2?f2) AS-TMAZ: (a1?2) IPF-ND, (b1?2) KAM, (c1?2) GOS, (d1?2) IQ (overlaid with grain boundaries) maps, (e1?2) misorientation-angle distribution (the blue line represents Mackenzie random distribution), and (f1?2) {111} pole figure (red triangle represents the dominant γ-fiber component of the shear texture).
Fig. 9. (a) Optical micrograph of the FSPed HEA cross-section showing blue, green, and pink dashed lines that represent indentations at uniform intervals both horizontally and vertically. The centerline perpendicular to the cross-section is represented by a yellow dotted line. The hardness in the region below the SZ is measured separately along the black dotted line. (b) Hardness profile of the dashed lines in Fig. 9(a) across the cross-section. The orange and violet dashed lines indicate regions corresponding to the tool pin and shoulder in the SZ, respectively. The brown dashed line indicates the boundary between the TMAZs and the BM at the RS and AS based on Row_1.
Fig. 10. (a) OCP versus time curves and (b) potentiodynamic polarization curves of the specimens in aerated 0.5 M Na2SO4 electrolyte solution at room temperature (Ecorr is corrosion potential; Ep is the pitting potential). The measured Ecorr and icorr values are presented in Table 2. INSET: The transpassive region of the polarization curves shown at a higher magnification. (c) SEM image showing a passive layer formed on the surface of the FSPed region (FSPed_front) identified as Cr2O3 using EDS point scans and listed in Table 4. (d) SEM image showing the measured lengths of some pits formed on the surface of the FSPed_front specimen.
Specimen | Ecorr (mV/SCE) | icorr (μA/cm2) | CR (μm/year) |
---|---|---|---|
BM | -264.892 (±43.676) | 0.407 | 4.346 |
RS-TMAZ | -441.895 (±10.972) | 0.333 | 3.553 |
FSPed_front | -356.750 (±4.623) | 0.216 | 2.309 |
FSPed_back | -412.598 (±5.577) | 0.610 | 6.521 |
AS-TMAZ | -242.920 (±4.361) | 0.382 | 4.080 |
Table 2 Corrosion potentials (with standard deviations) and current densities measured from potentiodynamic anodic polarization curves in Fig. 10(b), and the corresponding corrosion rates (CR).
Specimen | Ecorr (mV/SCE) | icorr (μA/cm2) | CR (μm/year) |
---|---|---|---|
BM | -264.892 (±43.676) | 0.407 | 4.346 |
RS-TMAZ | -441.895 (±10.972) | 0.333 | 3.553 |
FSPed_front | -356.750 (±4.623) | 0.216 | 2.309 |
FSPed_back | -412.598 (±5.577) | 0.610 | 6.521 |
AS-TMAZ | -242.920 (±4.361) | 0.382 | 4.080 |
Specimen | Grain size (μm) | *HAGBs (cm) | *LAGBs (cm) | Average KAM | CR (μm/year) |
---|---|---|---|---|---|
BM | 53.50 | 10.170 | 0.542 | 0.38 | 4.346 |
RS-TMAZ | 41.52 | 30.607 | 41.274 | 0.82 | 3.553 |
FSPed_front | 2.06 | 211.063 | 46.520 | 0.54 | 2.309 |
FSPed_back | 54.44 | 8.088 | 19.034 | 1.06 | 6.521 |
AS-TMAZ | 46.24 | 21.474 | 19.870 | 0.76 | 4.080 |
Table 3 Summary of the microstructural parameters and corrosion rates of the FSPed specimens.
Specimen | Grain size (μm) | *HAGBs (cm) | *LAGBs (cm) | Average KAM | CR (μm/year) |
---|---|---|---|---|---|
BM | 53.50 | 10.170 | 0.542 | 0.38 | 4.346 |
RS-TMAZ | 41.52 | 30.607 | 41.274 | 0.82 | 3.553 |
FSPed_front | 2.06 | 211.063 | 46.520 | 0.54 | 2.309 |
FSPed_back | 54.44 | 8.088 | 19.034 | 1.06 | 6.521 |
AS-TMAZ | 46.24 | 21.474 | 19.870 | 0.76 | 4.080 |
Points | Cr (at.%) | O (at.%) | Possible compound |
---|---|---|---|
1 | 41.02 | 58.98 | Cr2O3 |
2 | 38.52 | 61.48 | Cr2O3 |
3 | 43.88 | 56.12 | Cr2O3 |
Table 4 Composition of oxide layer identified by EDS point analysis in Fig. 10(c).
Points | Cr (at.%) | O (at.%) | Possible compound |
---|---|---|---|
1 | 41.02 | 58.98 | Cr2O3 |
2 | 38.52 | 61.48 | Cr2O3 |
3 | 43.88 | 56.12 | Cr2O3 |
Description | Value (units) |
---|---|
Cathodic equilibrium potential | -0.169 V |
Cathodic exchange current density | 3.033×10-12 A/m² |
Cathodic Tafel constant | 9.78 V |
Anodic equilibrium potential | -1.014 V |
Anodic exchange current density | 6.297×10-9 A/m² |
Anodic Tafel constant | 1.893 V |
Electrolyte conductivity | 4.99 S/m |
Temperature | 297 K |
HEA density | 8010 kg/m³ |
Average molecular weight | 0.0561 kg/mol |
Average charge number | 1.6 |
Table 5 Parameters used for FE analysis.
Description | Value (units) |
---|---|
Cathodic equilibrium potential | -0.169 V |
Cathodic exchange current density | 3.033×10-12 A/m² |
Cathodic Tafel constant | 9.78 V |
Anodic equilibrium potential | -1.014 V |
Anodic exchange current density | 6.297×10-9 A/m² |
Anodic Tafel constant | 1.893 V |
Electrolyte conductivity | 4.99 S/m |
Temperature | 297 K |
HEA density | 8010 kg/m³ |
Average molecular weight | 0.0561 kg/mol |
Average charge number | 1.6 |
Fig. 11. (a) Potential distribution (color) and absolute potential gradient (black arrows) in the electrolyte after 5 h. The color in the figure legend corresponds to the changes in the electrolyte potential in nanovolts (nV), with a maximum potential of 875.2376763 mV located at the undamaged film. The varying sizes of the black arrows represent the intensity of the absolute potential gradient, where the highest intensity is located close to the interface and decreases upwards in the electrolyte. (b) Variations in the change in the electrolyte potential after 5 h along with the passive film of the front surface of the FSPed region. (c) Current density distribution as contour lines in the electrolyte after 5 h. The color in the figure legend corresponds to the electrolyte current density. The varying sizes of the arrows represent the intensity of the current density distribution, where the highest intensity is located close to the interface and decreases upwards in the electrolyte. (d) Variations in the local current density along with the passive film of the front surface of the FSPed region after 5 h.
Fig. 12. (a) Potential distribution (color) and absolute potential gradient (black arrows) in the electrolyte after (a) 5 h, (b) 2, (c) 5, and (d) 10 months along with the passive film of the front surface of the FSPed region with potentials around ~875, ~872, ~868, and ~862 mV, respectively. The varying sizes of the black arrows represent the intensity of the absolute potential gradient, where the highest intensity is located close to the interface and decreases upwards in the electrolyte.
[1] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[2] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[3] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[4] |
F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, CALPHAD 45 (2014) 1-10.
DOI URL |
[5] |
J.W. Yeh, JOM 65 (2013) 1759-1771.
DOI URL |
[6] |
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61 (2013) 4887-4897.
DOI URL |
[7] |
J.W. Yeh, S.Y. Chang, Y. Der Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103 (2007) 41-46.
DOI URL |
[8] |
S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, J.W. Yeh, Mater. Sci. Eng. A 527 (2010) 5818-5825.
DOI URL |
[9] | C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A Phys.Metall. Mater. Sci. 36 (2005) 1263-1271. |
[10] |
J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Mater. Sci. Eng. A 527 (2010) 7210-7214.
DOI URL |
[11] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[12] |
B. Cantor, I. T.H.Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
[13] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[14] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[15] |
P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, J.W. Yeh, J. Alloys Compd. 587 (2014) 544-552.
DOI URL |
[16] |
G. Laplanche, O. Horst, F. Otto, G. Eggeler, E.P. George, J. Alloys Compd. 647 (2015) 548-557.
DOI URL |
[17] |
D. Shaysultanov, N. Stepanov, S. Malopheyev, I. Vysotskiy, V. Sanin, S. Mironov, R. Kaibyshev, G. Salishchev, S. Zherebtsov, Mater. Charact. 145 (2018) 353-361.
DOI URL |
[18] | S.J. Sun, Y.Z. Tian, X.H. An, H.R. Lin, J.W. Wang, Z.F. Zhang, Mater. Today Nano 4 (2018) 46-53. |
[19] |
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S. M.L.Nai, J. Wei, Scr. Mater. 154 (2018) 20-24.
DOI URL |
[20] |
R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (2005) 1-78.
DOI URL |
[21] |
R.S. Mishra, Scr. Mater. 58 (2008) 325-326.
DOI URL |
[22] |
H.H. Cho, H.N. Han, S.T. Hong, J.H. Park, Y.J. Kwon, S.H. Kim, R.J. Steel, Mater. Sci. Eng. A 528 (2011) 2889-2894.
DOI URL |
[23] |
S.Y. Anaman, H.H. Cho, H. Das, J.S. Lee, S.T. Hong, Mater. Charact. 154 (2019) 67-79.
DOI |
[24] |
H.H. Cho, S.H. Kang, S.H. Kim, K.H. Oh, H.J. Kim, W.S. Chang, H.N. Han, Mater. Des. 34 (2012) 258-267.
DOI URL |
[25] |
N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P.K. Liaw, R.S. Mishra, JOM 67 (2015) 1007-1013.
DOI URL |
[26] |
M. Komarasamy, N. Kumar, Z. Tang, R.S. Mishra, P.K. Liaw, Mater. Res. Lett. 3 (2014) 30-34.
DOI URL |
[27] |
S.S. Nene, K. Liu, M. Frank, R.S. Mishra, R.E. Brennan, K.C. Cho, Z. Li, D. Raabe, Sci. Rep. 7 (2017) 16167.
DOI PMID |
[28] |
J. Li, Y. Li, F. Wang, X. Meng, L. Wan, Z. Dong, Y. Huang, Mater. Sci. Eng. A 792 (2020) 139755.
DOI URL |
[29] |
T. Wang, S. Shukla, M. Komarasamy, K. Liu, R.S. Mishra, Mater. Lett. 236 (2019) 472-475.
DOI URL |
[30] |
H.H. Uhlig, Corros. Sci. 19 (1979) 777-791.
DOI URL |
[31] |
G.T. Burstein, P.C. Pistorius, S.P. Mattin, Corros. Sci. 35 (1993) 57-62.
DOI URL |
[32] |
H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corros. Sci. 134 (2018) 131-139.
DOI URL |
[33] | A.A. Rodriguez, J.H. Tylczak, M.C. Gao, P.D. Jablonski, M. Detrois, M. Ziomek-Moroz, J.A. Hawk, Adv. Mater. Sci. Eng. 2018 (2018) 1-11. |
[34] |
W. Mai, S. Soghrati, Electrochim. Acta 260 (2018) 290-304.
DOI URL |
[35] | S.Y. Anaman, H.H. Cho, H. Das, S. Il Baik, S.T. Hong, J.S. Lee, Int. J. Pr. Eng. Man-GT 7 (2020) 905-911. |
[36] |
H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. Technol. 35 (2019) 1278-1283.
DOI |
[37] |
S.Y. Anaman, S. Ansah, Y.F. Li, H.H. Cho, J.S. Lee, H.N. Han, S.T. Hong, Mater. Charact. 165 (2020) 110404.
DOI URL |
[38] |
K.B. Deshpande, Electrochim. Acta 56 (2011) 1737-1745.
DOI URL |
[39] |
M.G. Jo, H.J. Kim, M. Kang, P.P. Madakashira, E.S. Park, J.Y. Suh, D.I. Kim, S.T. Hong, H.N. Han, Met. Mater. Int. 24 (2018) 73-83.
DOI URL |
[40] | ASTM, E3-11 Standard Guide for Preparation of Metallographic Specimens, ASTM Copyright, 2011, pp. 1-12. |
[41] | P. Measurements, Annual Book of ASTM Standards 94, ASTM, 2010, pp. 1-12. |
[42] | G3-89, ASTM Standards, 2012, pp. 1-9. |
[43] | I. Gurrappa, G. Malakondaiah, Sci. Technol. Adv. Mater. 9 (2008) 1-7. |
[44] |
Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, T. Duval, Corros. Sci. 47 (2005) 2679-2699.
DOI URL |
[45] | X. Qin, Y. Xu, Y. Sun, H. Fujii, Z. Zhu, C.H. Shek, Mater. Sci. Eng. A 782 (2020) 1-11. |
[46] |
Z.G. Zhu, Y.F. Sun, F.L. Ng, M.H. Goh, P.K. Liaw, H. Fujii, Q.B. Nguyen, Y. Xu, C.H. Shek, S.M.L. Nai, J. Wei, Mater. Sci. Eng. A 711 (2018) 524-532.
DOI URL |
[47] |
S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Intermetallics 93 (2018) 269-273.
DOI URL |
[48] |
J.W. Bae, J. Jung, J.G. Kim, J.M. Park, S. Harjo, T. Kawasaki, W. Woo, H.S. Kim, Materialia 9 (2020) 100619.
DOI URL |
[49] |
H.H. Cho, S.T. Hong, J.H. Roh, H.S. Choi, S.H. Kang, R.J. Steel, H.N. Han, Acta Mater. 61 (2013) 2649-2661.
DOI URL |
[50] |
L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, N.G. Jones, Acta Mater. 122 (2017) 11-18.
DOI URL |
[51] |
M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, S.V. Divinski, J. Alloys Compd. 688 (2016) 994-1001.
DOI URL |
[52] |
M.A. Gutierrez, G.D. Rodriguez, G. Bozzolo, H.O. Mosca, Comput. Mater. Sci. 148 (2018) 69-75.
DOI URL |
[53] |
S. Pal, M.P. Phaniraj, J. Mater. Process. Technol. 222 (2015) 280-286.
DOI URL |
[54] | H.H. Cho, D.W. Kim, S.T. Hong, Y.H. Jeong, K. Lee, Y.G. Cho, S.H. Kang, H.N. Han, Metall. Mater. Trans. A Phys.Metall. Mater. Sci. 46 (2015) 6040-6051. |
[55] |
F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112 (2016) 40-52.
DOI URL |
[56] |
J. Guo, C. Tang, G. Rothwell, L. Li, Y.C. Wang, Q. Yang, X. Ren, Entropy 21 (2019) 1-17.
DOI URL |
[57] |
F.C.G. Filho, S.N. Monteiro, Materials 13 (2020) 1411.
DOI URL |
[58] |
X.K. Zhu, Y.J. Chao, J. Mater. Process. Technol. 146 (2004) 263-272.
DOI URL |
[59] |
G. Buffa, L. Fratini, S. Pasta, R. Shivpuri, CIRP Ann. Manuf. Technol. 57 (2008) 287-290.
DOI URL |
[60] |
H.S. Lee, J.H. Yoon, J.T. Yoo, K. No, Procedia Eng. 149 (2016) 62-66.
DOI URL |
[61] |
A. Charles, Electrochim. Acta 48 (2003) 1082.
DOI URL |
[62] |
Z.H. Jin, H.H. Ge, W.W. Lin, Y.W. Zong, S.J. Liu, J.M. Shi, Appl. Surf. Sci. 322 (2014) 47-56.
DOI URL |
[63] | A.S.T.M. International, Annual Book of ASTM Standards 89, ASTM, 2010, pp. 1-7. |
[64] |
K.D. Ralston, D. Fabijanic, N. Birbilis, Electrochim. Acta 56 (2011) 1729-1736.
DOI URL |
[65] | K.D. Ralston, N. Birbilis, Corrosion 66 (2010) 0750051-07500513. |
[66] |
K.D. Ralston, N. Birbilis, C.H.J. Davies, Scr. Mater. 63 (2010) 1201-1204.
DOI URL |
[67] |
L.F. Huang, J.M. Rondinelli, NPJ Mater. Degrad. 3 (2019) 1-13.
DOI URL |
[68] | M. Pourbaix, J. Electroanal. Chem. Interfacial Electrochem. (1974), National Association of Corrosion Engineers, p. 644. |
[69] | R. Parsons, J. Electroanal, Chem. Interfacial Electrochem. 13 (1967) 471. |
[70] | J.R. Davis, ASTM Int. (2000), p. 563. |
[71] |
P.A. Schweitzer, J. Chem. Inf. Model. 53 (2013) 1689-1699.
DOI URL |
[72] |
B. Zhang, X.L. Ma, J. Mater. Sci. Technol. 35 (2019) 1455-1465.
DOI |
[73] |
F. Ning, J. Tan, X. Wu, J. Mater. Sci. Technol. 47 (2020) 76-87.
DOI URL |
[1] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
[2] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[3] | Zhihua Dong, Shuo Huang, Valter Ström, Guocai Chai, Lajos Károly Varga, Olle Eriksson, Levente Vitos. MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature [J]. J. Mater. Sci. Technol., 2021, 79(0): 15-20. |
[4] | J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 171-177. |
[5] | Wenshuo Liang, Guimin Lu, Jianguo Yu. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials [J]. J. Mater. Sci. Technol., 2021, 75(0): 78-85. |
[6] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
[7] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[8] | Tobias Mittnacht, P.G. Kubendran Amos, Daniel Schneider, Britta Nestler. Morphological stability of three-dimensional cementite rods in polycrystalline system: A phase-field analysis [J]. J. Mater. Sci. Technol., 2021, 77(0): 252-268. |
[9] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[10] | Wenqiang Li, Yiming Zhao, Ning Liu, Changji Li, Ruiming Ren, Dayong Cai, Hongwang Zhang. Strain gradient induced grain refinement far below the size limit in a low carbon hypoeutectoid steel (0.19wt% C) via pipe inner surface grinding treatment [J]. J. Mater. Sci. Technol., 2021, 78(0): 155-169. |
[11] | Jingyu Pang, Hongwei Zhang, Long Zhang, Zhengwang Zhu, Huameng Fu, Hong Li, Aimin Wang, Zhengkun Li, Haifeng Zhang. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping [J]. J. Mater. Sci. Technol., 2021, 78(0): 74-80. |
[12] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[13] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[14] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[15] | Nana Kwabena Adomako, Giseung Shin, Nokeun Park, Kyoungtae Park, Jeoung Han Kim. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85(0): 95-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||