J. Mater. Sci. Technol. ›› 2021, Vol. 78: 38-50.DOI: 10.1016/j.jmst.2020.10.044
• Review Article • Previous Articles Next Articles
Bright O. Okonkwoa,b, Hongliang Minga,*(), Jianqiu Wanga,*(
), En-Hou Hana, Ehsan Rahimic,d, Ali Davoodic,e, Saman Hosseinpourf
Received:
2020-07-07
Revised:
2020-08-14
Accepted:
2020-10-12
Published:
2021-07-10
Online:
2020-11-14
Contact:
Hongliang Ming,Jianqiu Wang
About author:
wangjianqiu@imr.ac.cn(J. Wang).Bright O. Okonkwo, Hongliang Ming, Jianqiu Wang, En-Hou Han, Ehsan Rahimi, Ali Davoodi, Saman Hosseinpour. A new method to determine the synergistic effects of area ratio and microstructure on the galvanic corrosion of LAS A508/309 L/308 L SS dissimilar metals weld[J]. J. Mater. Sci. Technol., 2021, 78: 38-50.
Alloy | Cr | Ni | Mn | Si | C | Mo | Cu | S | Nb | Fe |
---|---|---|---|---|---|---|---|---|---|---|
LAS A508 | 0.14 | 0.83 | 1.39 | 0.23 | 0.194 | 0.490 | 0.039 | 0.0006 | <0.001 | Bal. |
309 L | 23.96 | 13.32 | 1.69 | 0.41 | 0.017 | 0.032 | 0.043 | <0.001 | 0.001 | Bal. |
308 L | 20.33 | 10.32 | 1.75 | 0.36 | 0.022 | 0.024 | 0.028 | 0.002 | 0.001 | Bal. |
Table 1 Chemical composition of the base metal and the weld metals (wt.%) used in this study.
Alloy | Cr | Ni | Mn | Si | C | Mo | Cu | S | Nb | Fe |
---|---|---|---|---|---|---|---|---|---|---|
LAS A508 | 0.14 | 0.83 | 1.39 | 0.23 | 0.194 | 0.490 | 0.039 | 0.0006 | <0.001 | Bal. |
309 L | 23.96 | 13.32 | 1.69 | 0.41 | 0.017 | 0.032 | 0.043 | <0.001 | 0.001 | Bal. |
308 L | 20.33 | 10.32 | 1.75 | 0.36 | 0.022 | 0.024 | 0.028 | 0.002 | 0.001 | Bal. |
Fig. 3. (a) OM micrograph of LAS A508/309L/308L SS dissimilar metal weld. ((b)-(d)) Higher magnification images of selected regions marked with red rectangular box in (a), revealing the microstructure transition in LAS A508 base metal: GR region (coarse martensite + little deposit of granular bainite (b)) → PGR region (bainite + little deposit of fine martensite (c)) → base metal matrix (bainite (d)).
Fig. 5. (a) Galvanic current density vs. time curves for anode/cathode area ratios 2:1, 1:1, 1:2 and 1:4. (b) Galvanic potential vs. time curves for anode/cathode area ratios 2:1, 1:1, 1:2 and 1:4 and time dependent curves of the open circuit potentials for LAS A508 and 309L/308L SS uncoupled.
Area ratio (anode/ cathode (cm2)) | ZRA measured galvanic current density (μA/cm2) | ZRA measured galvanic potential (V) |
---|---|---|
2:1 | 8.06 ± 1 | -0.598 |
1:1 | 11.32 ± 1 | -0.607 |
1:2 | 13.17 ± 1 | -0.608 |
1:4 | 19.59 ± 2 | -0.550 |
Table 2 Data extracted from ZRA measurements in Fig. 5.
Area ratio (anode/ cathode (cm2)) | ZRA measured galvanic current density (μA/cm2) | ZRA measured galvanic potential (V) |
---|---|---|
2:1 | 8.06 ± 1 | -0.598 |
1:1 | 11.32 ± 1 | -0.607 |
1:2 | 13.17 ± 1 | -0.608 |
1:4 | 19.59 ± 2 | -0.550 |
Area ratio (anode/ cathode (cm2)) | σi(μA/cm2) | irms(μA/cm2) | LI |
---|---|---|---|
2:1 | 0.845 | 8.87 | 0.09 |
1:1 | 0.298 | 9.80 | 0.03 |
1:2 | 1.035 | 13.21 | 0.07 |
1:4 | 0.573 | 11.33 | 0.05 |
Table 3 Localization index estimated data obtained from ZRA generated galvanic current density.
Area ratio (anode/ cathode (cm2)) | σi(μA/cm2) | irms(μA/cm2) | LI |
---|---|---|---|
2:1 | 0.845 | 8.87 | 0.09 |
1:1 | 0.298 | 9.80 | 0.03 |
1:2 | 1.035 | 13.21 | 0.07 |
1:4 | 0.573 | 11.33 | 0.05 |
Fig. 6. AFM topography images of (a) base metal, (b) partial grain refined, and (c) grain refined regions along with the root mean square value of the surface roughness, which is calculated from AFM images. Images have been captured after 6 h immersion to PWR primary water simulated solution with sulphate impurity at 25 °C. The corresponding roughness RMS values are provided for each region.
Fig. 7. (a) Histogram and (b) PSD analysis of AFM images in Fig. 6. Histogram and PSD profiles have been provided based on multimodal Gaussian distribution and FFT analysis, respectively.
Fig. 8. AFM topography images of low alloy steel A508 (anode)/309 L welded (cathode) interface before (a), and after 6 h immersion in PWR primary water simulated solution with sulphate impurity at 25 °C with 96 ppm of sulphate at different anode/cathode surface area ratio of (b) 2:1, (c)1:1, (d) 1:2, and (e) 1:4.
Fig. 9. The multi-modal Gaussian histograms distribution analysis of the AFM results (Fig. 8) disentangling the contribution of each surface constituents in overall corrosion of the low alloy steel A508 /309 L welded interface before immersion (a) and after 6 h immersion in PWR primary water simulated solution with sulphate impurity at 25 °C containing 96 ppm of sulphate at different anode/cathode surface area ratio of (b) 2:1, (c) 1:1, (d) 1:2, and (e) 1:4.
Anode/cathode ratio | Constituents | Zphase value (nm) | Standard deviation of topography (nm) | Estimated surface area (10-6 cm2) | Average corrosion depth Δz = zbase- zphase (nm) | Corrosion rate (μA cm-2) |
---|---|---|---|---|---|---|
2:1 Before corrosion test | A508 | 80 | 5.1 | |||
309 L SS | 55 | 12.3 | ||||
2:1 After corrosion test | Inclusion | 107.8 | 81.4 | 6.4 | (347.6-107.8=) 239.8 | 25.2 ± 3 |
Martensite | 193.7 | 71.7 | 53.2 | (347.6-193.7=) 153.9 | 16.15 | |
Bainite | 264.5 | 55.7 | 48.6 | (347.6-244.5=) 83.1 | 8.73 | |
309 L SS | 347.6 | 73.3 | ||||
1:1 | Inclusion | 168.2 | 62.3 | 4.32 | (457.1-168.2=) 288.9 | 30.4 ± 2 |
Martensite | 250.5 | 79.5 | 62.6 | (457.1-250.5=) 206.6 | 21.62 | |
Bainite | 338.3 | 131.2 | 41.1 | (457.1-338.3=) 118.8 | 12.38 | |
309 L SS | 457.1 | 60.5 | ||||
1:2 | Inclusion | 122.3 | 70.6 | 7.5 | (571.4-122.3=) 449.1 | 48.6 ± 4 |
Martensite | 325.4 | 194.2 | 57.24 | (571.4-325.4=) 245.6 | 25.71 | |
Bainite | 376.2 | 74.3 | 43.2 | (571.4-376.2=) 195.2 | 20.26 | |
309 L SS | 571.4 | 95.1 | ||||
1:4 | Inclusion | 190.5 | 80.4 | 8.64 | (723.6-190.5=) 533.1 | 59.6 ± 4 |
Martensite | 314.5 | 102.3 | 50.7 | (723.6-314.5=) 409.1 | 42.92 | |
Bainite | 517.9 | 175.2 | 48.6 | (723.6-517.9=) 205.7 | 22.2154 | |
309 L SS | 723.6 | 98.3 |
Table 4 Gaussian distribution parameters extracted from the topography histograms in Fig. 8. Average corrosion depths and corrosion rates are calculated from mean value of topography along with Faraday law for major corroded part of the heterogeneous surface.
Anode/cathode ratio | Constituents | Zphase value (nm) | Standard deviation of topography (nm) | Estimated surface area (10-6 cm2) | Average corrosion depth Δz = zbase- zphase (nm) | Corrosion rate (μA cm-2) |
---|---|---|---|---|---|---|
2:1 Before corrosion test | A508 | 80 | 5.1 | |||
309 L SS | 55 | 12.3 | ||||
2:1 After corrosion test | Inclusion | 107.8 | 81.4 | 6.4 | (347.6-107.8=) 239.8 | 25.2 ± 3 |
Martensite | 193.7 | 71.7 | 53.2 | (347.6-193.7=) 153.9 | 16.15 | |
Bainite | 264.5 | 55.7 | 48.6 | (347.6-244.5=) 83.1 | 8.73 | |
309 L SS | 347.6 | 73.3 | ||||
1:1 | Inclusion | 168.2 | 62.3 | 4.32 | (457.1-168.2=) 288.9 | 30.4 ± 2 |
Martensite | 250.5 | 79.5 | 62.6 | (457.1-250.5=) 206.6 | 21.62 | |
Bainite | 338.3 | 131.2 | 41.1 | (457.1-338.3=) 118.8 | 12.38 | |
309 L SS | 457.1 | 60.5 | ||||
1:2 | Inclusion | 122.3 | 70.6 | 7.5 | (571.4-122.3=) 449.1 | 48.6 ± 4 |
Martensite | 325.4 | 194.2 | 57.24 | (571.4-325.4=) 245.6 | 25.71 | |
Bainite | 376.2 | 74.3 | 43.2 | (571.4-376.2=) 195.2 | 20.26 | |
309 L SS | 571.4 | 95.1 | ||||
1:4 | Inclusion | 190.5 | 80.4 | 8.64 | (723.6-190.5=) 533.1 | 59.6 ± 4 |
Martensite | 314.5 | 102.3 | 50.7 | (723.6-314.5=) 409.1 | 42.92 | |
Bainite | 517.9 | 175.2 | 48.6 | (723.6-517.9=) 205.7 | 22.2154 | |
309 L SS | 723.6 | 98.3 |
Fig. 10. Calculated current density of most deteriorated surface constituents at welded interface (extracted from Fig. 9 and Table 4) for samples with different anode/cathode area ratios.
Phase constiutents | Area ratios (cm2) | Ta+m (μA cm-2) | Cm (μA cm -2) | S (μA cm-2) | Corrosion Augumentation Factor |
---|---|---|---|---|---|
1:1 to 2:1 | 8.73 | 12.38 | -3.65 | 0.71 | |
Bainite | 1:1 to 1:2 | 20.26 | 12.38 | 7.88 | 1.64 |
1:1 to 1:4 | 22.22 | 12.38 | 9.84 | 1.79 | |
1:1 to 2:1 | 16.15 | 21.62 | -5.47 | 0.75 | |
Martensite | 1:1 to 1:2 | 25.71 | 21.62 | 4.09 | 1.19 |
1:1 to 1:4 | 42.92 | 21.62 | 21.30 | 1.99 | |
1:1 to 2:1 | 25.20 | 30.40 | -5.20 | 0.83 | |
MnS inclusion | 1:1 to 1:2 | 48.60 | 30.40 | 18.20 | 1.59 |
1:1 to 1:4 | 59.60 | 30.40 | 29.20 | 1.96 |
Table 5 Amount of synergism (S) and corrosion augmentation factor values calculated from the corrosion rates of individual surface constituents (shown in Table 4).
Phase constiutents | Area ratios (cm2) | Ta+m (μA cm-2) | Cm (μA cm -2) | S (μA cm-2) | Corrosion Augumentation Factor |
---|---|---|---|---|---|
1:1 to 2:1 | 8.73 | 12.38 | -3.65 | 0.71 | |
Bainite | 1:1 to 1:2 | 20.26 | 12.38 | 7.88 | 1.64 |
1:1 to 1:4 | 22.22 | 12.38 | 9.84 | 1.79 | |
1:1 to 2:1 | 16.15 | 21.62 | -5.47 | 0.75 | |
Martensite | 1:1 to 1:2 | 25.71 | 21.62 | 4.09 | 1.19 |
1:1 to 1:4 | 42.92 | 21.62 | 21.30 | 1.99 | |
1:1 to 2:1 | 25.20 | 30.40 | -5.20 | 0.83 | |
MnS inclusion | 1:1 to 1:2 | 48.60 | 30.40 | 18.20 | 1.59 |
1:1 to 1:4 | 59.60 | 30.40 | 29.20 | 1.96 |
Fig. 11. The PSD profiles description of the AFM results for samples with different anode/cathode ratios (Fig. 8). Four individual contributions can be observed, appearing as the change in the slope of PSD profiles at distinct spatial frequency regions. These contributions correlate to different surface constituents in A508 /309 L welded interface (i.e. MnS inclusion, martensite phase, bainite phase, and 309 L SS base metal).
Fig. 12. The SEM micrograph of AFM test sample for area ratio 1:1 after immersion in a corrosive medium. The chemical composition of the marked pit with a yellow cross is provided at the right side.
[1] | L. Shi, X. Yang, Y. Song, D. Liu, K. Dong, D. Shan, E.-H. Han, J.Mater. Sci. Technol. 35(2019) 1886-1893. |
[2] |
Z.F. Yin, M.L. Yan, Z.Q. Bai, W.Z. Zhao, W.J. Zhou, Electrochim. Acta 53 (2008) 6285-6292.
DOI URL |
[3] |
X. Hao, J. Dong, J. Wei, I.-I.N. Etim, W. Ke, Corros. Sci. 121(2017) 84-93.
DOI URL |
[4] |
M. Milagre, U. Donatus, N. Mogili, R. Silva, B. de Viveiros, V. Pereira, R. Antunes, C. Machado, J. Araujo, I. Costa, J. Mater. Sci. Technol. 45(2020) 162-175.
DOI URL |
[5] |
T. Standish, J. Chen, R. Jacklin, P. Jakupi, S. Ramamurthy, D. Zagidulin, P. Keech, D. Shoesmith, Electrochim. Acta 211 (2016) 331-342.
DOI URL |
[6] | I.I. Udoh, H. Shi, M. Soleymanibrojeni, F. Liu, E.-H. Han, J.Mater. Sci. Technol. 44(2020) 102-115. |
[7] |
B.O. Okonkwo, H. Ming, Z. Zhang, J. Wang, E. Rahimi, S. Hosseinpour, A. Davoodi, Corros. Sci. 154(2019) 49-60.
DOI |
[8] |
B.O. Hasan, J. Petroleum Sci. Eng. 124(2014) 137-145.
DOI URL |
[9] | M.-C. Kim, S.-G. Park, K.-H. Lee, B.-S. Lee, Int. J. Press. Vessels Pip. 131(2015) 60-66. |
[10] |
H.T. Wang, G.Z. Wang, F.Z. Xuan, C.J. Liu, S.T. Tu, Mater. Sci. Eng.: A 568(2013) 108-117.
DOI URL |
[11] |
L. Dong, C. Ma, Q. Peng, E.-H. Han, W. Ke , J. Mater. Sci. Technol. 40(2020) 1-14.
DOI URL |
[12] |
C.L. Lai, L.W. Tsay, W. Kai, C. Chen, Corros. Sci. 52(2010) 1187-1193.
DOI URL |
[13] |
E. Rahimi, A. Rafsanjani-Abbasi, A. Imani, S. Hosseinpour, A. Davoodi, Corros. Sci. 140(2018) 30-39.
DOI URL |
[14] | T. Sarikka, M. Ahonen, R. Mouginot, P. Nevasmaa, P. Karjalainen-Roikonen, U. Ehrnstén, H. Hänninen, Int. J. Press. Vessels Pip. 145(2016) 13-22. |
[15] |
H. Ming, Z. Zhang, J. Wang, E.-H. Han, W. Ke, Mater. Charact. 97(2014) 101-115.
DOI URL |
[16] |
Q. Xiong, H. Li, Z. Lu, J. Chen, Q. Xiao, J. Ma, X. Ru, J. Nucl. Mater. 498(2018) 227-240.
DOI URL |
[17] |
C. Garcia, F. Martin, P. de Tiedra, Y. Blanco, M. Lopez , Corros. Sci. 50(2008) 1184-1194.
DOI URL |
[18] |
K.M. Deen, R. Ahmad, I.H. Khan, Z. Farahat, Mater. Des. 31(2010) 3051-3055.
DOI URL |
[19] |
K.J. Choi, S.C. Yoo, T. Kim, C.B. Bahn, J.H. Kim, J. Nucl. Mater. 462(2015) 54-63.
DOI URL |
[20] |
Z. Wang, J. Xu, T. Shoji, Y. Takeda, H. Yuya, M. Ooyama, J. Nucl. Mater. 508(2018) 1-11.
DOI URL |
[21] |
D.W. Rathod, S. Pandey, P.K. Singh, R. Prasad, Mater. Sci. Eng.: A 639(2015) 259-268.
DOI URL |
[22] |
S. Wang, H. Ming, J. Ding, Z. Zhang, J. Wang, E.-H. Han, A. Atrens, Corros. Sci. 102(2016) 469-483.
DOI URL |
[23] |
S. Wang, J. Ding, H. Ming, Z. Zhang, J. Wang, Mater. Charact. 100(2015) 50-60.
DOI URL |
[24] |
L.W. Wang, Z.Y. Liu, Z.Y. Cui, C.W. Du, X.H. Wang, X.G. Li, Corros. Sci. 85(2014) 401-410.
DOI URL |
[25] |
Y. Zhao, J. Dong, Y. Ma, L. Zhao, X. Pei, J. Mater. Sci. Technol. 26(2010) 477-480.
DOI URL |
[26] |
F. Mohammadi, F.F. Eliyan, A. Alfantazi, Corros. Sci. 63(2012) 323-333.
DOI URL |
[27] |
A. Stenta, S. Basco, A. Smith, C.B. Clemons, D. Golovaty, K.L. Kreider, J. Wilder, G.W. Young, R.S. Lillard, Corros. Sci. 88(2014) 36-48.
DOI URL |
[28] |
C.A. Huang, T.H. Wang, W.C. Han, C.H. Lee, Mater. Chem. Phys. 104(2007) 293-300.
DOI URL |
[29] |
J.X. Jia, G. Song, A. Atrens, Corros. Sci. 48(2006) 2133-2153.
DOI URL |
[30] |
Q. Qiao, G. Cheng, W. Wu, Y. Li, H. Huang, Z. Wei, Eng. Fail. Anal. 64(2016) 126-143.
DOI URL |
[31] |
L.-B. Niu, K. Okano, S. Izumi, K. Shiokawa, M. Yamashita, Y. Sakai, Corros. Sci. 132(2018) 284-292.
DOI URL |
[32] |
Z. Lai, P. Bi, L. Wen, Y. Xue, Y. Jin, Corros. Sci. 155(2019) 75-85.
DOI URL |
[33] |
A. Davoodi, Z. Esfahani, M. Sarvghad, Corros. Sci. 107(2016) 133-144.
DOI URL |
[34] |
H. Ming, R. Zhu, Z. Zhang, J. Wang, E.H. Han, W. Ke, M. Su, Mater. Sci. Eng.: A 669(2016) 279-290.
DOI URL |
[35] | D.-H. Xia, S. Song, Z. Qin, W. Hu, Y. Behnamian, J. Electrochem. Soc. 167(2020), 037513. |
[36] |
F. Mas, G. Martin, P. Lhuissier, Y. Bréchet, C. Tassin, F. Roch, P. Todeschini, A. Simar, Mater. Sci. Eng. A 667 (2016) 156-170.
DOI URL |
[37] | A.L. Shaeffler, Met. Prog. 56(1949),680-680B. |
[38] |
N. Wint, J. Leung, J.H. Sullivan, D.J. Penney, Y. Gao, Corros. Sci. 136(2018) 366-373.
DOI URL |
[39] | T. Sarikka, M. Ahonen, R. Mouginot, P. Nevasmaa, P. Karjalainen-Roikonen, U. Ehrnstén, H. Hänninen, Int. J. Press. Vessels Pip. 157(2017) 30-42. |
[40] |
K.-H. Lee, S.-g. Park, M.-C. Kim, B.-S. Lee, D.-M. Wee, Mater. Sci. Eng.: A 529(2011) 156-163.
DOI URL |
[41] | W.F. Smith, J. Hashemi, McGraw Hill Education (2010) 148,ISBN: 978-111-32461-4. |
[42] | J. Wang, J. Wang, E.-H. Han , J.Mater. Sci. Technol. 32(2016) 333-340. |
[43] |
Y.S.S. SEUNG, H.C. Park, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Scr. Mater. 49(2003) 1175-1180.
DOI URL |
[44] | Y. Zhu, Y. Song, L. Xu, Z. Qin, D.-H. Xia, Trans.Tianjin Univ. 5(2020) 1-10. |
[45] |
S.-W. Kim, D.-J. Kim, H.-P. Kim , Nucl. Eng. Technol. 44(2012) 773-780.
DOI URL |
[46] |
B. Stellwag, Corros. Sci. 40(1998) 337-370.
DOI URL |
[47] |
G.D. Song, S.-H. Jeon, Y.-H. Son, J.G. Kim, D.H. Hur , Corros. Sci. 131(2018) 71-80.
DOI URL |
[48] |
A.I. Ikeuba, B. Zhang, J. Wang, E.-H. Han, W. Ke, J. Mater. Sci. Technol. 35(2019) 1444-1454.
DOI URL |
[49] |
E. Rahimi, A. Rafsanjani-Abbasi, A. Imani, S. Hosseinpour, A. Davoodi, Mater 11 (2018) 1820-1841.
DOI URL |
[50] |
A.G. Marques, J. Izquierdo, R.M. Souto, A.M. Simões, Electrochim. Acta 153(2015) 238-245.
DOI URL |
[51] |
A. Chiba, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 160(2013) C511-C520.
DOI URL |
[52] |
E. Blasco-Tamarit, A. Igual-Mu˜noz, J.G. Antón, Corros. Sci. 49(2007) 4472-4490.
DOI URL |
[53] |
A. Legat, V. Dolecek, Corros. 51(1995) 295-300.
DOI URL |
[1] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[2] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[3] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[4] | Wenlong Qi, Jidong Wang, Xuanpeng Li, Yanan Cui, Yang Zhao, Junfeng Xie, Guanxin Zeng, Qiuying Gao, Tao Zhang, Fuhui Wang. Effect of oxide scale on corrosion behavior of HP-13Cr stainless steel during well completion process [J]. J. Mater. Sci. Technol., 2021, 64(0): 153-164. |
[5] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[6] | Jie Guo, Xinguo Zhao, Naikun Sun, Xiaofei Xiao, Wei Liu, Zhidong Zhang. Tunable quantum Shubnikov-de Hass oscillations in antiferromagnetic topological semimetal Mn-doped Cd3As2 [J]. J. Mater. Sci. Technol., 2021, 76(0): 247-253. |
[7] | Xuan Wu, Yuanyuan Liu, Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang. A discussion on evaluation criteria for crevice corrosion of various stainless steels [J]. J. Mater. Sci. Technol., 2021, 64(0): 29-37. |
[8] | Dawei Guo, Chi Tat Kwok. A corrosion study on W-Cu alloys in sodium chloride solution at different pH [J]. J. Mater. Sci. Technol., 2021, 64(0): 38-56. |
[9] | Pan Liu, Qinhao Zhang, Xinran Li, Jiming Hu, Fahe Cao. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64(0): 99-113. |
[10] | Qiang Ren, Yuexin Zhang, Ying Ren, Lifeng Zhang, Jujin Wang, Yadong Wang. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab [J]. J. Mater. Sci. Technol., 2021, 61(0): 147-158. |
[11] | Manigandan Ramadoss, Yuanfu Chen, Yang Hu, Bin Wang, Ramkumar Jeyagopal, Karpuraranjith Marimuthu, Xinqiang Wang, Dongxu Yang. Hierarchically porous nanoarchitecture constructed by ultrathin CoSe2 embedded Fe-CoO nanosheets as robust electrocatalyst for water oxidation [J]. J. Mater. Sci. Technol., 2021, 78(0): 229-237. |
[12] | Mingyue Sun, Bin Xu, Bijun Xie, Dianzhong Li, Yiyi Li. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology [J]. J. Mater. Sci. Technol., 2021, 71(0): 84-86. |
[13] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
[14] | Chao Xie, Xingtong Lu, Yi Liang, Huahan Chen, Li Wang, Chunyan Wu, Di Wu, Wenhua Yang, Linbao Luo. Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application [J]. J. Mater. Sci. Technol., 2021, 72(0): 189-196. |
[15] | Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70(0): 136-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||