J. Mater. Sci. Technol. ›› 2021, Vol. 78: 30-37.DOI: 10.1016/j.jmst.2020.10.048
• Review Article • Previous Articles Next Articles
Lin Zhaoa, Zhao Wanga, Yan Lia,*(), Sen Wanga, Lifeng Wanga, Zhaojun Qia, Qiang Gea, Xiaoguang Liua, JinZhong Zhangb
Received:
2020-07-16
Revised:
2020-10-09
Accepted:
2020-10-10
Published:
2021-07-10
Online:
2020-11-21
Contact:
Yan Li
About author:
*E-mail address: liyan2011@ustb.edu.cn (Y. Li).Lin Zhao, Zhao Wang, Yan Li, Sen Wang, Lifeng Wang, Zhaojun Qi, Qiang Ge, Xiaoguang Liu, JinZhong Zhang. Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties[J]. J. Mater. Sci. Technol., 2021, 78: 30-37.
Fig. 2. SEM images of the surface of bulk Ti3AlC2 before (a) and after (b) electrochemical reaction. (c) TEM image. (d) HR-TEM image. (e) Raman spectrum. (f) XRD pattern of the prepared Cl, N-Ti3C2 MQDs and Ti3AlC2 powder.
Fig. 4. (a) The photo of Cl, N-Ti3C2 MQDs solution before and after 15 d in the air. (b) The TEM of Cl, N-Ti3C2 MQDs solution after 15 d in the air. (c) The XPS of Cl, N-Ti3C2 MQDs after 15 d in the air.
Fig. 5. (a) Absorption spectrum. (b) Survival ratios of RhB with and without Cl, N-Ti3C2 MQDs in solution after 1 h of UV illumination, absorption spectra of RhB without Cl, N-Ti3C2 MQDs before illumination was used as control. (c) Photos of RhB dyes solution for fading degree before and after photodegradation reaction. (d) PL emission spectrum of the experimental solution for different volume Cl, N-Ti3C2 MQDs under light irradiation for 1 h. (e) Absorption spectra of Cl, N-Ti3C2 MQDs and KMnO4 reacted in the dark for 30 min, absorption spectra of KMnO4 without Cl, N-Ti3C2 MQDs was used as control. (f) Photos of KMnO4 reduction assay before and after photodegradation reaction.
·OH Scavenger | Concentration of ·OH-producing substances (mg/mL) | Scavenger’s Concentration (mg/mL) | Reaction time | The highest scavenging efficiency (%) |
---|---|---|---|---|
CQDs 39 | 4.76 (H2O2, Fenton) | 15.000 | 30 min | 90.0 |
Ce-CQDs 40 | 0.68 (H2O2, Fenton) | 0.0265 | 5 min | 75.0 |
N/S-CQDs 41 | 3.40 (H2O2, Fenton) | 0.5000 | 30 min | 71.2 |
Se-CQDs 42 | 0.17 (H2O2, UV) | 1.0000 | 3 min | 80.0∼85.0 |
Cl-GQDs 25 | 0.050 (TiO2, UV, 8 W) | 0.0500 | 1 h | 91.0 |
GQDs-1840 | 0.050 (TiO2, UV, 8 W) | 0.0500 | 1 h | 81.7 |
Cl, N-Ti3C2 MQDs (this work) | 0.050 (TiO2, UV, 8 W) | 0.0125 | 1 h | 93.3 |
Table 1 Comparison of different kinds of ·OH scavengers with the highest scavenging efficiency.
·OH Scavenger | Concentration of ·OH-producing substances (mg/mL) | Scavenger’s Concentration (mg/mL) | Reaction time | The highest scavenging efficiency (%) |
---|---|---|---|---|
CQDs 39 | 4.76 (H2O2, Fenton) | 15.000 | 30 min | 90.0 |
Ce-CQDs 40 | 0.68 (H2O2, Fenton) | 0.0265 | 5 min | 75.0 |
N/S-CQDs 41 | 3.40 (H2O2, Fenton) | 0.5000 | 30 min | 71.2 |
Se-CQDs 42 | 0.17 (H2O2, UV) | 1.0000 | 3 min | 80.0∼85.0 |
Cl-GQDs 25 | 0.050 (TiO2, UV, 8 W) | 0.0500 | 1 h | 91.0 |
GQDs-1840 | 0.050 (TiO2, UV, 8 W) | 0.0500 | 1 h | 81.7 |
Cl, N-Ti3C2 MQDs (this work) | 0.050 (TiO2, UV, 8 W) | 0.0125 | 1 h | 93.3 |
Fig. 6. (a) XPS spectra of Cl, N-Ti3C2 MQDs after reaction with KMnO4 and high-resolution XPS spectra of (b) C1s, (c) O1s, (d) N1s, (e) Cl2p after the reaction.
[1] |
Z. Zhou, J. Song, L. Nie, X. Chen, Chem. Soc. Rev. 45(2016) 6597-6626.
DOI URL |
[2] |
M. Gilles, E. Brun, C. Sicardroselli, J. Colloid. Interf. Sci. 525(2018) 31-38.
DOI URL |
[3] |
Z. Chen, Z. Wang, J. Ren, Accounts. Chem. Res. 51(2018) 789-799.
DOI URL |
[4] |
M. Cheng, G. Zeng, D. Huang, Chem. Eng. J. 284(2016) 582-598.
DOI URL |
[5] | T. Brauers, M. Hausmann, A. Bister, J. Geophys. Res. 106(2001) 7399-7414. |
[6] |
S. Zhao, M. Lan, X. Zhu, H. Xue, T.W. Ng, X. Meng, C.S. Lee, P. Wang, W. Zhang, ACS Appl. Mater. Inter. 7(2015) 17054-17060.
DOI URL |
[7] |
Q. Chen, D. Yang, L. Yu, Mater. Horiz. 7(2020) 317-337.
DOI URL |
[8] |
H. Lin, S. Gao, C. Dai, J. Am. Chem. Soc. 139(2017) 16235-16247.
DOI URL |
[9] |
C. Liu, Q. Xu, J. Mater. Sci. 54(2019) 2458-2471.
DOI URL |
[10] | X. Yu, X. Cai, H. Cui, Nanoscale 45(2017) 17859-17864. |
[11] | Q. Xue, H. Zhang, M. Zhu, Adv. Mater. 29 (2017). |
[12] |
Q. Guan, J. Ma, W. Yang, Nanoscale 11(2019) 14123-14133.
DOI URL |
[13] |
Y. Cao, T. Wu, K. Zhang, ACS Nano 13(2019) 1499-1508.
DOI PMID |
[14] |
M. Naguib, V. Mochalin, M. Barsoum, Adv. Mater. 26(2014) 992-1005.
DOI URL |
[15] |
M. Kathleen, N. Vadym, G. Yury, Chem. Mater. 29(2017) 1632-1640.
DOI URL |
[16] |
H. Shuohan, N. Vadym, Inorg. Chem. 58(2019) 1958-1966.
DOI PMID |
[17] |
X. Ren, M. Huo, M. Wang, ACS Nano 13(2019) 6438-6454.
DOI URL |
[18] |
R. Cheng, T. Hu, M. Hu, J. Mater. Sci. Technol. 40(2020) 119-127.
DOI URL |
[19] |
H. Zhang, T. Hu, X. Wang, J. Mater. Sci. Technol. 38(2020) 205-220.
DOI URL |
[20] |
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516(2014) 78-81.
DOI |
[21] |
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.Å. Näslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum, Chem. Mater. 26(2014) 2374-2381.
DOI URL |
[22] |
X. Liu, N. Chai, Z. Yu, J. Mater. Sci. Technol. 35(2019) 2859-2867.
DOI URL |
[23] |
W. Cao, W. Feng, Y. Jiang, Mater. Horiz. 6(2019) 1057-1065.
DOI URL |
[24] |
Y. Li, Y. Zhao, H. Cheng, J. Am. Chem. Soc. 134(2012) 15-18.
DOI URL |
[25] |
L. Wang, Y. Li, Y. Wang, ACS. Appl. Mater. Inter. 11(2019) 21822-21829.
DOI URL |
[26] |
Y. Li, S. Li, Y. Wang, Phys. Chem. Chem. Phys. 19(2017) 11631-11638.
DOI URL |
[27] |
S. Ni, F. Han, W. Wang, Sensor. Actuat. B-chem. 259(2018) 963-971.
DOI URL |
[28] | W. Peng, M. Luo, X. Xu, Adv. Energy Mater. (2020), 2001364. |
[29] | C. Lu, L. Yang, B. Yan, Adv. Funct. Mater. (2020). |
[30] |
Y. Feng, F. Zhou, Q. Deng, Ceram. Int. 46(2020) 8320-8327.
DOI URL |
[31] | Y. Song, Z. Sun, Z. Fan, W. Cai, Y. Shao, G. Sheng, Nano Energy 70 (2020). |
[32] |
V. Ruiz, L. Yate, I. García, G. Cabanero, H.J. Grande, Carbon 116(2017) 366-374.
DOI URL |
[33] |
S. Yang, P.P. Zhang, F.X. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X.L. Feng, Angew. Chem. Int. Ed. 57(2018) 15491-15495.
DOI URL |
[34] | N. Md, J. Hwang, K. Soo, Jour. Nanosci. Nanotechno. 18(2018) 3793-3799. |
[35] | R.P. Chaukulkar, S. Agarwal, J. Vac. Sci. Technol. 31(2013),031509. |
[36] |
M. Kathleen, V.N. Mochalin, Y. Gogotsi, Chem. Mater. 29(2017) 1632-1640.
DOI URL |
[37] |
H. Shuo, V.N. Mochalin, Inorg. Chem. 58(2019) 1958-1966.
DOI URL |
[38] |
J. Zhuang, W. Dai, Q. Tian, Langmuir 26(2010) 9686-9694.
DOI URL |
[39] |
H.T. Wang, Y.S. Xie, X.K. Na, J.R. Bi, S. Liu, L.J. Zhang, M.Q. Tan, Food Chem. 286(2019) 405-412.
DOI URL |
[40] | M.M. Zhang, L.L. Zhao, F.T. Du, Y.C. Wu, R. Cai, L.X. Xu, H.R. Jin, S.Q. Zou, A.H. Gong, F.Y. Du, Nano. Technol. 30(2019),325101. |
[41] |
Y.H. Lia, F.J. Liu, J.B. Cai, X.G. Huang, L.X. Lin, Y. Lin, H. Yang, S.X. Lia, Microchem. J. 147(2019) 1038-1047.
DOI URL |
[42] |
F. Li, T.Y. Li, C.X. Sun, J.H. Xia, Y. Jiao, H.P. Xu, Angew. Chem. Int. Ed. 56(2017) 9910-9914.
DOI URL |
[43] |
Y.M. Wang, W.H. Kong, L.F. Wang, J.Z. Zhang, Y. Li, X.G. Liu, Y. Li, Phys. Chem. Chem. Phys. 21(2019) 1336-1343.
DOI URL |
[44] | L.H. Hu, A.M. Stemig, K.H. Wammer, T.J. Strathmann, Environ. Sci. Technol. 45(2011) 3636-3642. |
[45] |
T. Ouyang, K. Cheng, Y. Gao, S. Kong, J. Mater. Chem. A. 4(2016) 9832-9843.
DOI URL |
[46] |
Y.Y. Wen, T.E. Rufford, X.Z. Chen, N. Li, M.Q. Lyu, L.M. Dai, L.Z. Wang, Nano Energy 38(2017) 368-376.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||