J. Mater. Sci. Technol. ›› 2021, Vol. 62: 162-172.DOI: 10.1016/j.jmst.2020.04.066
• Research Article • Previous Articles Next Articles
Y. Caoa,b, X. Lina,b,*(), Q.Z. Wanga,b, S.Q. Shia,b, L. Maa,b, N. Kanga,b,*(
), W.D. Huanga,b
Received:
2020-03-27
Revised:
2020-04-23
Accepted:
2020-04-24
Published:
2021-01-30
Online:
2021-02-01
Contact:
X. Lin,N. Kang
About author:
nan.kang@nwpu.edu.cn (N. Kang).Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg[J]. J. Mater. Sci. Technol., 2021, 62: 162-172.
Al | Si | Mg | Fe | Mn | Zn | Ti | Cu | O |
---|---|---|---|---|---|---|---|---|
Balance | 9.34 | 0.34 | 0.38 | 0.15 | 0.052 | 0.036 | <0.03 | 0.046 |
Table 1 Chemical composition of investigated AlSi10Mg alloy powder (wt%).
Al | Si | Mg | Fe | Mn | Zn | Ti | Cu | O |
---|---|---|---|---|---|---|---|---|
Balance | 9.34 | 0.34 | 0.38 | 0.15 | 0.052 | 0.036 | <0.03 | 0.046 |
Laser power | Scanning speed | Hatching distance | Beam radius | Layer thickness |
---|---|---|---|---|
340 W | 1600 mm/s | 100 μm | 70 μm | 30 μm |
Table 2 SLM processing parameters.
Laser power | Scanning speed | Hatching distance | Beam radius | Layer thickness |
---|---|---|---|---|
340 W | 1600 mm/s | 100 μm | 70 μm | 30 μm |
Fig. 3. Microstructures of as-built AlSi10Mg samples: (a) inner and boundary of molten pool and high magnification images of (b) inner and (c) boundary regions.
Fig. 4. Microstructure of as-built and exposed SLM AlSi10Mg specimens: (a), (b), (c), (g), (h) and (i) as-built samples; (d) and (j) at 100 °C for 30 min; (e) and (k) at 200 °C for 30 min; (f) and (l) at 300 °C for 30 min (AB: as built and HT: heat treated).
Fig. 5. Microstructures of as-built and exposed SLM AlSi10Mg specimens: (a) and (b) represent as-built sample; (c) and (d) at 400 °C for 15 min; (e) and (f) at 400 °C for 30 min (AB: as built and HT: heat treated).
Fig. 6. Schematic illustration of microstructure evolution of the SLMed AlSi10Mg samples: (a) asbuilt conditions, (b) after exposure at 100 °C and 200 °C for 30 min, (c) after exposure at 300 °C for 30 min, (d) after exposure at 400 °C for 15 min, (e) after exposure at 400 °C for 30 min.
Fig. 7. Orientation color maps: (a) and (b) before and after exposure at 200 °C for 30 min, respectively; (c) and (d) before and after exposure at 400 °C for 30 min, respectively; Pole figures of AlSi10Mg alloy samples: (e) and (f) before and after exposure at 200 °C for 30 min, respectively; (h) and (i) before and after exposure at 400 °C for 30 min, respectively.
Fig. 8. KAM maps of AlSi10Mg samples: (a) and (b) before and after exposure at 200 °C for 30 min, respectively; (c) and (d) before and after exposure at 400 °C for 30 min.
Fig. 10. Variation of tensile properties with temperature of as-built AlSi10Mg alloy [16,22,27]: (a) YS and UTS and (b) elongation (SR: stress relief heat treated).
Test temperature (°C) | YS (MPa) | UTS (MPa) | Elastic modulus (GPa) | Elongation (%) |
---|---|---|---|---|
25 | 322 ± 10 | 460 ± 7 | 76 ± 4 | 6.94 ± 0.85 |
100 | 298 ± 7 | 382 ± 12 | 65 ± 2 | 13.14 ± 3.05 |
200 | 236 ± 8 | 266 ± 19 | 59 ± 1 | 23.73 ± 0.38 |
300 | 143 ± 6 | 150 ± 9 | 49 ± 3 | 26.56 ± 3.10 |
400 | 25 ± 3 | 30 ± 4 | 18 ± 2 | 75.02 ± 4.02 |
Table 3 Mechanical properties of SLMed AlSi10Mg specimens at as-built and heated conditions.
Test temperature (°C) | YS (MPa) | UTS (MPa) | Elastic modulus (GPa) | Elongation (%) |
---|---|---|---|---|
25 | 322 ± 10 | 460 ± 7 | 76 ± 4 | 6.94 ± 0.85 |
100 | 298 ± 7 | 382 ± 12 | 65 ± 2 | 13.14 ± 3.05 |
200 | 236 ± 8 | 266 ± 19 | 59 ± 1 | 23.73 ± 0.38 |
300 | 143 ± 6 | 150 ± 9 | 49 ± 3 | 26.56 ± 3.10 |
400 | 25 ± 3 | 30 ± 4 | 18 ± 2 | 75.02 ± 4.02 |
Sample | Solid solubility [ | σSSS (MPa) | ΔσSSS (MPa) |
---|---|---|---|
As-fabricated | 7.89 | 86.8 | 0 |
300 °C | 3.02 | 33.2 | -53.6 |
500 °C | 1.67 | 18.4 | -68.4 |
Table 4 Solid solubility of Si in Al matrix and contribution of solution strengthening.
Sample | Solid solubility [ | σSSS (MPa) | ΔσSSS (MPa) |
---|---|---|---|
As-fabricated | 7.89 | 86.8 | 0 |
300 °C | 3.02 | 33.2 | -53.6 |
500 °C | 1.67 | 18.4 | -68.4 |
Sample | Mean diameter (nm) | Fraction (%) | Shear modulus (GPa) | σorowan (MPa) | Δσorowan (MPa) |
---|---|---|---|---|---|
As-fabricated | 46 | 0.08 | 28.2 | 106.9 | 0 |
300 °C | 51 | 0.26 | 18.2 | 112.1 | 5.2 |
400 °C | 83 | 0.46 | 6.3 | 31.7 | -75.2 |
Table 5 Mean diameter and fraction of nano-Si and contribution of Orowan looping mechanism.
Sample | Mean diameter (nm) | Fraction (%) | Shear modulus (GPa) | σorowan (MPa) | Δσorowan (MPa) |
---|---|---|---|---|---|
As-fabricated | 46 | 0.08 | 28.2 | 106.9 | 0 |
300 °C | 51 | 0.26 | 18.2 | 112.1 | 5.2 |
400 °C | 83 | 0.46 | 6.3 | 31.7 | -75.2 |
Fig. 11. Fracture surfaces of AlSi10Mg tensile specimens: (a), (b) and (c) the graphs of testing temperature at RT, 100 °C, 200 °C, respectively; (d), (e) and (f) the amplification graphs of (a), (b) and (c), respectively.c.
Fig. 12. Fracture surfaces of AlSi10Mg tensile specimens: (a) and (c) the graphs of testing temperature at 300 °C; (b) and (d) the graphs of testing temperature at 400 °C.
[1] |
Z. Wang, W. Wu, G. Qian, L. Sun, X. Li, J.A.F.O. Correia, Eng. Fract. Mech. 214 (2019) 149-163.
DOI URL |
[2] |
L. Zhang, B. Song, A.G. Zhao, R.J. Liu, L. Yang, Y.S. Shi, Compos. Struct. 226 (2019), 111199.
DOI URL |
[3] | F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E.P. Ambrosio, M. Lombardi, P. Fino, D. Manfredi, Materials 10 (2017) 76. |
[4] |
F. Deirmina, N. Peghini, B. AlMangour, D. Grzesiak, M. Pellizzari, Mater. Sci. Eng. A 753 (2019) 109-121.
DOI URL |
[5] | K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Loeber, Z. Wang, A.K. Chaubey, U. Kuehn, J. Eckert, Mater. Sci. Eng. A 590 (2017) 153-160. |
[6] |
M. Wang, B. Song, Q.S. Wei, Y.S. Shi, J. Alloys. Compd. 810 (2019), 151926.
DOI URL |
[7] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
[8] |
P.T. Summers, Y.Y. Chen, C.M. Rippe, B. Allen, A.P. Mouritz, S.W. Case, B.Y. Lattimer, Fire Sci. Rev. 4 (2015) 3.
DOI URL |
[9] |
W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo, X.L. Tian, Prog. Mater. Sci. 104 (2019) 330-379.
DOI URL |
[10] | J.H. Rao, P. Rometsch, X.H. Wu, C.H.J. Davies, in: F. Froes, R. Boyer (Eds.), Additive Manufacturing for the Aerospace Industry, Elsevier, Inc., Amsterdam, 2019, pp. 143-161. |
[11] | K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Phys. Procedia 39 (2012) 439-446. |
[12] |
B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, Scr. Mater. 141 (2017) 45-49.
DOI URL |
[13] | N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi, Mater. Sci. Eng. A 704 (2017) 218-228. |
[14] |
L.F. Wang, X.H. Jiang, M.X. Guo, X.G. Zhu, B. Yan, Mater. Sci. Technol. 33 (2017) 2274-2282.
DOI URL |
[15] |
Q. Yan, B. Song, Y.H. Shi, J. Mater. Sci. Technol. 41 (2020) 199-208.
DOI URL |
[16] | J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings Properties, Processes and Applications, ASM International, OH, 2004, pp. 236-237. |
[17] |
M. Fousová, D. Dvorsk ý, A. Michalcová, D. Vojtech, Mater. Charact. 137 (2018) 119-126.
DOI URL |
[18] |
J. Fiocchi, A. Tuissi, P. Bassani, C.A. Biffi, J. Alloys. Compd. 695 (2017) 3402-3409.
DOI URL |
[19] | A. Iturrioz, E. Gil, M.M. Petite, F. Garciandia, A.M. Mancisidor, M.S. Sebastian, Weld. World 62 (2018) 885-892. |
[20] | G. Nicoletto, R. Konečná, S. Fintova, Int. J. Fatigue 41 (2012) 39-46. |
[21] |
J. Stolarz, O. Madelaine-Dupuich, T. Magnin, Mater. Sci. Eng. A 299 (2001) 275-286.
DOI URL |
[22] | N.E. Uzan, R. Shneck, O. Yeheskel, N. Frage, Addit. Manuf. 24 (2018) 257-263. |
[23] |
J.L. Zhang, B. Song, Q.S. Wei, D. Bourell, J. Mater. Sci. Technol. 35 (2019) 270-284.
DOI URL |
[24] | A.H. Maamoun, M. Elbestawi, G.K. Dosbaeva, S.C. Veldhuis, Addit. Manuf. 21 (2018) 234-247. |
[25] |
B. Almangour, D. Grzesiak, J.M. Yang, Mater. Des. 96 (2016) 150-161.
DOI URL |
[26] |
B. AlMangour, J.M. Yang, Mater. Des. 110 (2016) 914-924.
DOI URL |
[27] | M. Zamani, Al-Si Cast Alloys-microstructure and Mechanical Properties at Ambient and Elevated Temperature, Ph.D. Thesis, Jonkoping University, 2015. |
[28] |
F. Alghamdi, X. Song, A. Hadadzadeh, B. Shalchi-Amirkhiz, M. Mohammadi, M. Haghshenas, Mater. Sci. Eng. A 783 (2020), 139296.
DOI URL |
[29] |
D. Tomus, Y. Tian, P.A. Rometsch, M. Heilmaier, X.H. Wu, Mater. Sci. Eng. A 667 (2016) 42-53.
DOI URL |
[30] |
Y.K. Kim, S.H. Park, Y.J. Kim, A. Bandar, K.A. Lee, Metall. Mater. Trans. A 49 (2018) 5763-5774.
DOI URL |
[31] | J.H. Rao, Y. Zhang, X.F. Fang, Y. Chen, X.H. Wu, C.H.J. Davies, Addit. Manuf. 17 (2017) 113-122. |
[32] |
K.K. Wang, X.P. Li, Q.L. Li, G.G. Shu, G.Y. Tang, Mater. Sci. Eng. A 696 (2017) 248-256.
DOI URL |
[33] |
R.H. Wu, Y. Liu, C. Geng, Q.Q. Lin, Y.F. Xiao, J.R. Xu, W. Kang, J. Alloys. Compd. 713 (2017) 212-221.
DOI URL |
[34] |
Q.F. Xu, K.Q. Hu, X. Ma, T. Gao, X.F. Liu, Mater. Sci. Eng. A 733 (2018) 211-219.
DOI URL |
[35] |
A. Bandar, Y.K. Kim, G. Dariusz, K.A. Lee, Compos. Part. B-Eng. 156 (2019) 51-63.
DOI URL |
[36] | Y. Dai, Microstructure and Mechanical Properties of Selective Laser Melting AlSi10Mg Alloy, Ph.D. Thesis, Northwestern Polytechnical University, 2019 (in Chinese). |
[37] |
K.V. Yang, P. Rometsch, C.H.J. Davies, A.J. Huang, X.H. Wu, Mater. Des. 154 (2018) 275-290.
DOI URL |
[38] |
A. Deschamps, F. Livet, Y. Bréchet, Acta Mater. 47 (1998) 281-292.
DOI URL |
[39] |
X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, J.P. Kruth, Acta Mater. 129 (2017) 183-193.
DOI URL |
[40] |
M. Alizadeh, H.A. beni, Mater. Res. Bull. 59 (2014) 290-294.
DOI URL |
[41] |
A. Kempf, K. Hilgenberg, Mater. Sci. Eng. A 776 (2020), 138976.
DOI URL |
[42] | C.L. Gan, K.H. Zheng, W.J. Qi, M.J. Wang, Trans. Nonferrous Met. Soc. China 24 (2014) 3486-3491. |
[43] |
J. Delahaye, J.T. Tchuindjang, J. Lecomte-Beckers, O. Rigo, A.M. Habraken, A. Mertens, Acta Mater. 175 (2019) 160-170.
DOI URL |
[44] |
R.G. Ding, J. Yan, H.Y. Li, S.Y. Yu, A. Rabiei, P. Bowen, Mater. Des. 176 (2019), 107843.
DOI URL |
[1] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[2] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[3] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[4] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[5] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[6] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[7] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[8] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[9] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[10] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[11] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[12] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[13] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[14] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[15] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||