J. Mater. Sci. Technol. ›› 2021, Vol. 62: 148-161.DOI: 10.1016/j.jmst.2020.05.041
• Research Article • Previous Articles Next Articles
Jianwen Nie, Chaoyue Chen*(), Longtao Liu, Xiaodong Wang, Ruixin Zhao, Sansan Shuai, Jiang Wang*(
), Zhongming Ren
Received:
2020-03-16
Revised:
2020-05-10
Accepted:
2020-05-12
Published:
2021-01-30
Online:
2021-02-01
Contact:
Chaoyue Chen,Jiang Wang
About author:
jiangwang@i.shu.edu.cn (J. Wang).Jianwen Nie, Chaoyue Chen, Longtao Liu, Xiaodong Wang, Ruixin Zhao, Sansan Shuai, Jiang Wang, Zhongming Ren. Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition[J]. J. Mater. Sci. Technol., 2021, 62: 148-161.
Sample | Cr | Co | W | Mo | Al | Ta | Hf | Re | Ni |
---|---|---|---|---|---|---|---|---|---|
Substrate | 7.00 | 8.00 | 5.00 | 2.00 | 6.20 | 7.00 | 0.20 | 3.00 | Bal. |
Powder | 7.09 | 7.60 | 4.76 | 2.05 | 7.10 | 6.78 | 0.18 | 0 | Bal. |
Table 1 Chemical composition (wt%) of feedstock powder and substrate.
Sample | Cr | Co | W | Mo | Al | Ta | Hf | Re | Ni |
---|---|---|---|---|---|---|---|---|---|
Substrate | 7.00 | 8.00 | 5.00 | 2.00 | 6.20 | 7.00 | 0.20 | 3.00 | Bal. |
Powder | 7.09 | 7.60 | 4.76 | 2.05 | 7.10 | 6.78 | 0.18 | 0 | Bal. |
Fig. 4. Finite element mesh used in the numerical simulation. (a, a1) The mesh grid under un-deformed condition, (b, b1) the deformed mesh structure with one-layer deposition, and (c, c1) the specific boundary conditions.
Property | Values |
---|---|
Density of liquid (kg/m3) | 7634 |
Density of solid (kg/m3) | 8630 |
Specific heat (J/(kg K)) | 400 + 0.263×T |
Conductivity (W/(m K)) | 9.8 + 0.0138×T |
Liquid temperature (K) | 1672.4 |
Solidus temperature (K) | 1446.8 |
Latent heat of fusion (J/kg) | 3.0 × 105 |
Table 2 Thermo-physical property parameters of substrate and powder material.
Property | Values |
---|---|
Density of liquid (kg/m3) | 7634 |
Density of solid (kg/m3) | 8630 |
Specific heat (J/(kg K)) | 400 + 0.263×T |
Conductivity (W/(m K)) | 9.8 + 0.0138×T |
Liquid temperature (K) | 1672.4 |
Solidus temperature (K) | 1446.8 |
Latent heat of fusion (J/kg) | 3.0 × 105 |
Fig. 5. OM images of the microstructures of the laser-remelting tracks: (a) 3D overview, magnified views on the (b) horizontal, and (c) vertical microstructure.
Fig. 7. Temperature field of the substrate (a) and the molten pool (b) during laser remelting, and the temperature gradient simulation results under air-cooling (c) and forced water-cooling.
Parameter | Experimental result | Numerical result | ||
---|---|---|---|---|
Air-cooling | Water-cooling | Air-cooling | Water-cooling | |
W (mm) | 1.64 | 1.23 | 0.98 | 0.75 |
Dr (mm) | 0.33 | 0.30 | 0.32 | 0.22 |
Re (%) | 55.81 | 77.14 | 62.50 | 75.00 |
Table 3 Geometry of the laser remelting molten pool and the ratio of epitaxial columnar dendrites.
Parameter | Experimental result | Numerical result | ||
---|---|---|---|---|
Air-cooling | Water-cooling | Air-cooling | Water-cooling | |
W (mm) | 1.64 | 1.23 | 0.98 | 0.75 |
Dr (mm) | 0.33 | 0.30 | 0.32 | 0.22 |
Re (%) | 55.81 | 77.14 | 62.50 | 75.00 |
Fig. 9. OM images of single-track and one-layer deposit under different substrate conditions: (a) air-cooling and (b) forced water-cooling, and their magnified views on the CET are shown in (c) and (d), respectively.
Fig. 10. OM images of single-track and two-layer deposit under different substrate conditions: (a) air-cooling and (b) forced water-cooling, and their magnified views on the CET are shown in (c) and (d), respectively.
Deposit layer | One-layer | Two-layer | ||
---|---|---|---|---|
Substrate condition | Air-cooling | Water-cooling | Air-cooling | Water-cooling |
W (mm) | 1.03 | 0.96 | 1.09 | 1.01 |
Dr (mm) | 0.88 | 0.81 | 0.13 | 0.13 |
Hd (mm) | 0.90 | 0.53 | 0.14 | 0.13 |
Re (%) | 52.62 | 84.86 | 48.23 | 76.19 |
Table 4 Geometric size of the deposition layer and the ratio of epitaxial columnar.
Deposit layer | One-layer | Two-layer | ||
---|---|---|---|---|
Substrate condition | Air-cooling | Water-cooling | Air-cooling | Water-cooling |
W (mm) | 1.03 | 0.96 | 1.09 | 1.01 |
Dr (mm) | 0.88 | 0.81 | 0.13 | 0.13 |
Hd (mm) | 0.90 | 0.53 | 0.14 | 0.13 |
Re (%) | 52.62 | 84.86 | 48.23 | 76.19 |
Fig. 11. Calculated molten pool (a) and the temperature gradient (G) of the first layer deposition sample toward the X-axis, Y-axis, and Z-axis with air-cooling (b-d, b1-d1) and water-cooling (e-g, e1-g1).
Fig. 12. Calculated molten pool (a) and the temperature gradient (G) of the second layer deposition sample toward the X-axis, Y-axis, and Z-axis with air-cooling (b-d, b1-d1) and the forced water-cooling (e-g, e1-g1).
Fig. 13. Optical micrographs and corresponding electron backscattered diffraction (EBSD) grain-structure maps of a transverse section of DED sample with (a) air-cooling and (b) forced water-cooling.
Fig. 14. Observation of the dendritic microstructure at the fifth (a, b) and second (c, d) layer of multi-layer deposition on the horizontal section under air-cooling (a, c) and the forced water-cooling (b, d) conditions.
Fig. 15. SEM images of air-cooling DED samples at different positions: (a, b) interface, the morphology and dimension of the γ' phase at the same height as the air-cooling DED sample (c) and water-cooling DED sample (d).
[1] |
T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Acta Mater. 52 (2004) 3737-3744.
DOI URL |
[2] |
N. Matan, D.C. Cox, C.M.F. Rae, R.C. Reed, Acta Mater. 47 (1999) 2031-2045.
DOI URL |
[3] |
W.H. Ma, Y.C. Xie, C.Y. Chen, H. Fukanuma, J. Wang, Z.M. Ren, R. Huang, J. Alloys. Compd. 792 (2019) 456-467.
DOI URL |
[4] |
D.Y. Zhang, Z. Feng, C.J. Wang, W.D. Wang, Z. Liu, W. Niu, Mater. Sci. Eng. A 724 (2018) 357-367.
DOI URL |
[5] | K. Harris, G.L. Erickson, S.L. Sikkenga, W.D. Brentnall, J.M. Aurrecoechea, K.G. Kubarych, Superalloy 2 (1993) 481-487. |
[6] |
T.D. Anderson, J.N. DuPont, T. DebRoy, Acta Mater. 58 (2010) 1441-1454.
DOI URL |
[7] |
T.D. Anderson, J.N. DuPont, T. DebRoy, Metall. Mater. Trans. A 41 (2009) 181-193.
DOI URL |
[8] |
G.W. Wang, J.J. Liang, Y.Z. Zhou, L.B. Zhao, T. Jin, X.F. Sun, J. Mater. Sci. Technol. 34 (2018) 732-735.
DOI URL |
[9] |
S.A. David, J.M. Vitek, S.S. Babu, L.A. Boatner, R.W. Reed, Sci. Technol. Weld. Joining 2 (1997) 79-88.
DOI URL |
[10] |
M. Gaumann, S. Henry, F. Cléton, J.D. Wagnière, W. Kurz, Mater. Sci. Eng. A 271 (1999) 232-241.
DOI URL |
[11] |
J.J. Liang, Y.S. Liu, J.G. Li, Y.Z. Zhou, X.F. Sun, J. Mater. Sci. Technol. 35 (2019) 344-350.
DOI URL |
[12] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
[13] |
X.C. Yan, S. Yin, C.Y. Chen, C.J. Huang, R. Bolot, R. Lupoi, M. Kuang, W. Ma, C. Coddet, H. Liao, M. Liu, J. Alloys. Compd. 764 (2018) 1056-1071.
DOI URL |
[14] | Q.Q. Han, Y.C. Gu, R. Setchi, F. Lacan, R. Johnston, S.L. Evans, S.F. Yang, Addit. Manuf. 30 (2019) 100919. |
[15] | B. Rottwinkel, C. Nölke, S. Kaierle, V. Wesling, Proc. CIRP 22 (2014) 263-267. |
[16] |
G.W. Wang, J.J. Liang, Y.F. Yang, Y. Shi, Y.Z. Zhou, T. Jin, X.F. Sun, J. Mater. Sci. Technol. 34 (2018) 1315-1324.
DOI URL |
[17] |
X.D. Zhan, X. Lin, Z.N. Gao, C.Q. Qi, J.J. Zhou, D.D. Gu, J. Alloys. Compd. 755 (2018) 123-134.
DOI URL |
[18] | P.N. Atkar, A. Greenfield, D.C. Conner, H. Choset, A.A. Rizzi, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, Barcelona, Spain, 18-22, 2005. |
[19] |
B. Rottwinkel, L. Schweitzer, C. Noelke, S. Kaierle, V. Wesling, Phys. Proc. 56 (2014) 301-308.
DOI URL |
[20] | J.D. Hunt, Mater. Sci. Eng. A 65 (1984) 75-83. |
[21] | Z.W. Guo, S. Yin, Z.D. Qian, H.L. Liao, S. Gu, Comput. Fluids 114 (2015) 163-171. |
[22] |
Z.Y. Liu, H. Qi, Phys. Proc. 56 (2014) 411-420.
DOI URL |
[23] |
H. Qi, Z.Y. Liu, Phys. Proc. 39 (2012) 903-912.
DOI URL |
[24] |
Z.Y. Liu, L. Jiang, Z. Wang, L.J. Song, Metall. Mater. Trans. A 49 (2018) 6533-6543.
DOI URL |
[25] |
Z.Y. Liu, H. Qi, Metall. Mater. Trans. A 45 (2014) 1903-1915.
DOI URL |
[26] |
Y.J. Liang, J. Li, A. Li, X. Cheng, S. Wang, H.M. Wang, J. Alloys. Compd. 697 (2017) 174-181.
DOI URL |
[27] |
Y.J. Liang, X. Cheng, J. Li, H.M. Wang, Mater. Des. 130 (2017) 197-207.
DOI URL |
[28] |
Z.Y. Liu, Z. Wang, J. Mater. Sci. Technol. 34 (2018) 2116-2124.
DOI URL |
[29] |
L. Wang, N. Wang, W.J. Yao, Y.P. Zheng, Acta Mater. 88 (2015) 283-292.
DOI URL |
[30] |
L. Wang, N. Wang, Acta Mater. 104 (2016) 250-258.
DOI URL |
[31] |
J.C. Guo, W.J. Chen, R.N. Yang, X.W. Lei, W.J. Yao, N. Wang, J. Alloys. Compd. 800 (2019) 240-246.
DOI URL |
[32] | Z. Guo, N. Saunders, A. Miodownik, J.P. Schillé, Mater. Sci. Eng. A 413 (2005) 465-469. |
[33] | H. Li, M. Ramezani, Z. Chen, S. Singamneni, Trans. Indian Inst. Met. 72 (2019) 3201-3214. |
[34] |
C.Y. Chen, Y.C. Xie, C. Verdy, R.Z. Huang, H.L. Liao, Z.M. Ren, S.H. Deng, Surf. Coat. Technol. 326 (2017) 355-365.
DOI URL |
[35] | J. Yang, F. Li, A. Pan, H. Yang, C. Zhao, W. Huang, Z. Wang, X. Zeng, X. Zhang, J. Alloys. Compd. 808 (2019). |
[36] | J.A. Xiong, Q.W. Hu, F.S. Wu, Z.Y. Li, Appl. Laser 21 (2001) 309-312. |
[37] | Q.G. Li, X. Lin, X.H. Wang, Q. Zhang, W.D. Huang, Rare Met. Mater. Eng. 46 (2017) 955-960. |
[38] |
Z.P. Zhou, L. Huang, Y.J. Shang, Y.P. Li, L. Jiang, Q. Lei, Mater. Des. 160 (2018) 1238-1249.
DOI URL |
[39] |
Y.C. Wang, S.X. Li, L. Zhou, S.H. Ai, F. Liu, H. Zhang, Z.G. Wang, Philos. Mag. 84 (2004) 3335-3351.
DOI URL |
[1] | Z. Liu, Z.B. Zhao, J.R. Liu, Q.J. Wang, R. Yanga. Distinct dendritic α phase emerging on the surface of primary α phase in a compressed near-α titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34(4): 666-669. |
[2] | Guowei Wang, Jingjing Liang, Yizhou Zhou, Libin Zhao, Tao Jin, Xiaofeng Sun. Variation of crystal orientation during epitaxial growth of dendrites by laser deposition [J]. J. Mater. Sci. Technol., 2018, 34(4): 732-735. |
[3] | Hengcheng Liao, Wanru Huang, Qigui Wang, Fang Jia. Effects of Strontium, Magnesium Addition, Temperature Gradient, and Growth Velocity on Al–Si Eutectic Growth in a Unidirectionally-solidified Al–13 wt% Si Alloy [J]. J. Mater. Sci. Technol., 2014, 30(2): 146-153. |
[4] | Chuanyi Zang,Xiaozhou Chen,Qiang Hu,Wei Guo,Guofeng Huang. Morphology Change of Metastable Regrown Graphite with Boron Additive under HPHT [J]. J Mater Sci Technol, 2009, 25(04): 539-542. |
[5] | Chuanyi ZANG, Rui LI, Hongan MA, Shangsheng LI, Xiaopeng JIA. Effect of Seed Sizes on Growth of Large Synthetic Diamond Crystals [J]. J Mater Sci Technol, 2008, 24(02): 153-156. |
[6] | Li′na CHENG, Xiuliang MA. Microstructural characteristics of epitaxial BaSrNb0.3Ti0.7O3 film [J]. J Mater Sci Technol, 2007, 23(04): 517-520. |
[7] | Sen YANG, Yunpeng SU, Wenjin LIU, Weidong HUANG, Yaohe ZHOU. Rapid Directional Solidification with Ultra-High Temperature Gradient and Cellular Spacing Selection of Cu-Mn Alloy [J]. J Mater Sci Technol, 2003, 19(03): 225-228. |
[8] | Zhuangqi HU Huaming WANG Institute of Metal Research,Academia Sinica,Shenyang,110015,ChinaY.Murata M.Morinaga Toyohashi University of Technology,Toyohashi,Aichi,440 Japan. Solidification Microstructures of a Single-crystal Superalloy under Ultra-high Temperature Gradient Conditions [J]. J Mater Sci Technol, 1993, 9(1): 25-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||