Please wait a minute...
J Mater Sci Technol  2009, Vol. 25 Issue (03): 405-409    DOI:
Research Articles Current Issue | Archive | Adv Search |
Doping Effects on Electronic Conductivity and Electrochemical Performance of LiFePO4
Jiezi Hu1), Jian Xie2),  Xinbing Zhao1)†, Hongming Yu1), Xin Zhou1),  Gaoshao Cao1) , Jiangping Tu1)
1) State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2) Department of Chemistry, Mie University, 1577, Kurimamachiyacho, Tsu, Mie 514-8507, Japan
Download:  HTML  PDF(753KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Olivine-structured pure LiFePO4 and doped Li(M, Fe)PO4 (M=La, Ce, Nd, Mn, Co, Ni) have been synthesized by a solvothermal method. X-ray diffraction and field emission scanning electron microscopy analyses indicate that the as-prepared LiFePO4 is well-crystallized nanopowders without any detectable impurity phases. The electronic conductivity of LiFePO4 is enhanced by around 1-3 orders by doping. It was found that doping alone is not sufficient for the high-rate performance of LiFePO4 and surface coating with such as carbon should be needed. The best dopant for LiFePO4 is Nd among those studied in the present work. Accordingly, doping with 1 mol fraction Nd leads to an increase in 70 mAh/g at 0.1 C for the hydrothermally synthesized sample and 50 mAh/g at 1.0 C after carbon-coating in comparison with the undoped samples.

Key words:  Lithium iron phosphate      Doping      Conductivity      Hydrothermal synthesis     
Received:  22 February 2008     
Fund: 

the Science-Technology Foundation of Zhejiang Province under grant No. 2007C21100

Corresponding Authors:  Xinbing Zhao     E-mail:  zhaoxb@zju.edu.cn

Cite this article: 

Jiezi Hu,Jian Xie,Xinbing Zhao,Hongming Yu,Xin Zhou,Gaoshao Cao,Jiangping Tu. Doping Effects on Electronic Conductivity and Electrochemical Performance of LiFePO4. J Mater Sci Technol, 2009, 25(03): 405-409.

URL: 

https://www.jmst.org/EN/     OR     https://www.jmst.org/EN/Y2009/V25/I03/405

[1 ] A.K. Padhi, K.S. Nanjundaswamy and J.B. Goode-nough: J. Electrochem. Soc., 1997, 144, 1188.
[2 ] X.M. Wang, Y. Sone and S. Kuwajima: J. Power Sources, 2005, 142, 313.
[3 ] A. Yamada, M. Hosoya, S.C. Chung, Y. Kudo, K. Hi-nokuma, K.Y. Liu and Y. Nishi: J. Power Sources, 2003, 119-121, 232.
[4 ] M. Manickam, P. Singh, S. Thurgate and K. Prince: J. Power Sources, 2006, 158, 646.
[5 ] S.Q. Shi, C.Y. Quyang, Z.H. Xiong, L.J. Liu, Z.X. Wang, H. Li, D.S. Wang, L.Q. Chen and X.J. Huang: Phys. Rev. B-Solid St., 2005, 71, 144404.
[6 ] M. Koltypin, D. Aurbach, L. Nazar and B. Ellis: J. Power Sources, 2007, 174, 1241.
[7 ] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, K.T. Kang and H.G. Kim: Solid State Commun., 2004, 129, 311.
[8 ] N. Jayaprakash and N. Kalaiselvi: Electrochem. Commun., 2007, 9, 620.
[9 ] B.Q. Zhu, X.H. Li, Z.X. Wang and H.J. Guo: Mater. Chem. Phys., 2006, 98, 373.
[10] J.F. Ni, H. H. Zhou, J. T. Chen and X. X. Zhang: Mater. Lett., 2005, 59, 2361.
[11] A.A. Salah, A. Mauger, C.M. Julien and F. Gendron: Mater. Sci. Eng., 2006, 129, 232.
[12] D.H. Kim and J.K. Kim: J. Phys. Chem. Solids, 2007, 68, 734.
[13] F. Croce, A.D. Epifanio, J. Hassoun, A. Deptula, T. Olczac: Electrochem. Solid State Lett., 2002, 5, A47.
[14] C.H. Mi, X.B. Zhao, G.S. Cao and J.P. Tu: J. Electrochem. Soc., 2005, 152, A483.
[15] L. Wang, Y.D. Huang, R.R. Jiang and D.Z. Jia: Electrochim. Acta, 2007, 52, 6778.
[16] M.R. Yang, W.H. Ke and S.H. Wu: J. Power Sources, 2005, 146, 539.
[17] M.R. Gaberscek, R. Dominko, M. Bele, M. Remskar, D. Hanzel and J. Jamnik: Solid State Ionics, 2005, 176, 1801.
[18] J.K. Kim, J.W. Choi, G. Cheruvally, J.U. Kim, J.H. Ahn, G.B. Cho, K.W. Kim and H.J. Ahn: Mater. Lett., 2007, 61, 3822.
[19] V. Palomares, A. Goni, I.G.D. Muro, I.D. Meatza, M. Bengoechea, O. Miguel and T. Rojo: J. Power Sources, 2007, 171, 879.
[20] G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo and N. Penazzi: J. Power Sources, 2006, 160, 516.
[21] X.J. Chen, X.B. Zhao, G.S. Cao, S.L. Ma, J. Xie and T.J. Zhu: Trans. Nonferrous Met. Soc. China, 2006, 16, 1665.
[22] D.G. Zhuang, X.B. Zhao, J. Xie, J. Tu, T.J. Zhu and G.S. Cao: Acta Phys.-Chim. Sin., 2006, 22, 840.
[23] S.Y. Chung, J.T. Blokong and Y.M. Chiang: Nat. Mater., 2002, 1, 123.
[24] C. Delacourt, C.Wurm, L. Laffont, J.B. Leriche and C. Masquelier: Solid State Ionics, 2006, 177, 333.
[25] A.A. Salah, P. Jozwiak, K. Zaghib, J. Garbarczyk, F. Gendron, A. Mauger and C.M. Julien: Spectrochim. Acta A, 2006, 65, 1007.
[26] N. Jayaprakash and N. Kalaiselvi: Electrochem. Commun., 2007, 9, 620.
[27] J. Hong, C.S. Wang and U. Kasavajjula: J. Power Sources, 2006, 162, 1289.
[28] J. Jiang, C.Y. Ouyang, H. Li, Z.X. Wang, X.J. Huang and L.Q. Chen: Solid State Commun., 2007, 143, 144.

[1] Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties[J]. 材料科学与技术, 2020, 42(0): 229-240.
[2] A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity[J]. 材料科学与技术, 2020, 36(0): 1-6.
[3] Mulin Liu, Naoki Takata, Asuka Suzuki, Makoto Kobashi. Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 106-117.
[4] Lei Liu, Feifei Lu, Sihao Xia, Yu Diao, Jian Tian. Improved electron capture capability of field-assisted exponential-doping GaN nanowire array photocathode[J]. 材料科学与技术, 2020, 42(0): 54-62.
[5] Myung-Sic Chae, Tae Ho Lee, Kyung Rock Son, Tae Hoon Park, Kyo Seon Hwang, Tae Geun Kim. Electrochemically metal-doped reduced graphene oxide films: Properties and applications[J]. 材料科学与技术, 2020, 40(0): 72-80.
[6] Ji-Ye Baek, Duy Le Thai, Lee Sang Yeon, Hyungtak Seo. Aluminum doping for optimization of ultrathin and high-k dielectric layer based on SrTiO3[J]. 材料科学与技术, 2020, 42(0): 28-37.
[7] Zifan Zhao, Heng Chen, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Wei Xu, Kuang Sun, Zhijian Peng, Yanchun Zhou. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites[J]. 材料科学与技术, 2020, 47(0): 45-51.
[8] Jian Wang, Lanyue Cui, Yande Ren, Yuhong Zou, Jinlong Ma, Chengjian Wang, Zhongyin Zheng, Xiaobo Chen, Rongchang Zeng, Yufeng Zheng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31[J]. 材料科学与技术, 2020, 47(0): 52-67.
[9] Yujuan Li, Yingkang Wei, Xiaotao Luo, Changjiu Li, Ninshu Ma. Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits[J]. 材料科学与技术, 2020, 40(0): 185-195.
[10] Thang Q. Tran, Jeremy Kong Yoong Lee, Amutha Chinnappan, W.A.D.M. Jayathilaka, Dongxiao Ji, Vishnu Vijay Kumar, Seeram Ramakrishna. Strong, lightweight, and highly conductive CNT/Au/Cu wires from sputtering and electroplating methods[J]. 材料科学与技术, 2020, 40(0): 99-106.
[11] Minhwan Ko, Sang Yeon Lee, Jucheol Park, Hyungtak Seo. Significant control of metal-insulator transition temperature through catalytic excessive oxygen doping in high-performance vanadium dioxide nanobeam channel[J]. 材料科学与技术, 2020, 44(0): 96-101.
[12] Meigui Xu, Hainan Sun, Wei Wang, Yujuan Shen, Wei Zhou, Jun Wang, Zhi-Gang Chen, Zongping Shao. Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution[J]. 材料科学与技术, 2020, 39(0): 22-27.
[13] Minghe Fang, Xuhai Xiong, Yabin Hao, Tengxin Zhang, Han Wang, Hui-Ming Cheng, You Zeng. Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method[J]. 材料科学与技术, 2019, 35(9): 1989-1995.
[14] Changwei Tang, Xiaohui Ning, Jian Li, Hui-Lin Guo, Ying Yang. Modulating conductivity type of cuprous oxide (Cu2O) films on copper foil in aqueous solution by comproportionation[J]. 材料科学与技术, 2019, 35(8): 1570-1577.
[15] Heng Chen, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yiming Lei, Jie Zhang, Yanchun Zhou. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C[J]. 材料科学与技术, 2019, 35(8): 1700-1705.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.