J. Mater. Sci. Technol. ›› 2022, Vol. 128: 107-117.DOI: 10.1016/j.jmst.2022.02.057
• Research Article • Previous Articles Next Articles
Dong Yuqiaoa, Song Guang-Linga,c,d,*(), Zhang Jiaweib, Gao Yahuib, Ming Wang Zia, Zheng Dajianga
Received:
2021-11-10
Revised:
2022-01-30
Accepted:
2022-02-24
Published:
2022-11-20
Online:
2022-11-22
Contact:
Song Guang-Ling
About author:
*E-mail address: songgl@sustech.edu.cn (G.-L. Song).Dong Yuqiao, Song Guang-Ling, Zhang Jiawei, Gao Yahui, Ming Wang Zi, Zheng Dajiang. Biocorrosion induced by red-tide alga-bacterium symbiosis and the biofouling induced by dissolved iron for carbon steel in marine environment[J]. J. Mater. Sci. Technol., 2022, 128: 107-117.
Fig. 1. Identification and purification: (a) bacterial isolation and identification from algal solution, (b) purification of P. tricornutum, (a1) the bacterial biofilms, (b1) the purified P. tricornutum, and (b2) the purified P. tricornutum without associated bacteria.
Fig. 2. EIS spectra: (a) equivalent circuit for the EIS in the sterile control, (b, c) EIS spectra for sterile LB and F/2 media respectively, (a’) equivalent circuit for the EIS in the biotic system, (b’, c’ and c’’) EIS spectra for the B. altitudinis, P. tricornutum and the symbiotic system, and (e) charge transfer resistance obtained from the curve-fitting using the equivalent circuit (a’).
Duration (day) | Rs (Ω cm2) | QfY (μS cm−2 sn) | Rf (×104 Ω cm2) | QdlY (×10−5 Ω−1cm−2 sn) | Rct (×104 Ω cm2) |
---|---|---|---|---|---|
In the absence of B. altitudinis | |||||
1 | 21.5 ± 1.08 | - | - | 11.1 ± 1.04 | 2.55±0.51 |
4 | 20.3 ± 0.45 | - | - | 10.5 ± 0.95 | 4.06±0.51 |
7 | 19.7 ± 0.14 | - | - | 10.7 ± 0.63 | 4.67±0.57 |
10 | 19.4 ± 3.01 | - | - | 10.4 ± 0.82 | 5.49±0.62 |
14 | 17.9 ± 0.93 | - | - | 11.2 ± 0.32 | 5.87±0.46 |
In the presence of B. altitudinis | |||||
1 | 20.5 ± 1.86 | 5.31±0.38 | 2.00±0.66 | 11.6 ± 3.34 | 1.31±0.36 |
4 | 17.9 ± 1.54 | 5.08±0.63 | 1.48±0.16 | 7.71±0.90 | 2.91±0.64 |
7 | 17.6 ± 1.38 | 5.57±0.39 | 1.73±0.47 | 8.23±0.67 | 3.44±0.36 |
10 | 17.5 ± 1.95 | 6.45±0.79 | 1.47±0.66 | 8.91±0.54 | 3.98±0.91 |
14 | 16.4 ± 1.17 | 7.31±1.07 | 0.72±0.10 | 9.17±0.97 | 3.06±0.77 |
In the absence of the starved B. altitudinis | |||||
1 | 21.4 ± 0.76 | - | - | 25.4 ± 2.84 | 0.19±0.04 |
4 | 22.3 ± 0.82 | - | - | 11.2 ± 1.31 | 5.25±0.63 |
7 | 22.0 ± 0.56 | - | - | 12.7 ± 1.60 | 6.49±0.62 |
10 | 21.6 ± 1.03 | - | - | 13.9 ± 1.88 | 7.09±1.43 |
14 | 21.1 ± 0.38 | - | - | 15.5 ± 2.09 | 8.87±1.61 |
In the presence of the starved B. altitudinis | |||||
1 | 19.4 ± 2.54 | - | - | 17.3 ± 0.78 | 0.21±0.03 |
4 | 19.4 ± 2.12 | - | - | 11.6 ± 0.46 | 6.03±0.18 |
7 | 18.6 ± 2.46 | - | - | 13.1 ± 0.60 | 6.35±0.22 |
10 | 17.9 ± 2.47 | - | - | 14.6 ± 0.88 | 6.82±0.65 |
14 | 17.3 ± 2.64 | - | - | 15.7 ± 0.95 | 8.05±0.84 |
In the absence of the symbiotic system | |||||
1 | 10.1 ± 0.81 | - | - | 27.7 ± 0.01 | 0.21±0.02 |
4 | 11.0 ± 1.77 | - | - | 82.2 ± 4.94 | 0.17±0.01 |
7 | 11.4 ± 0.64 | - | - | 101.5 ± 7.10 | 0.17±0.01 |
10 | 11.8 ± 0.75 | - | - | 131.4 ± 12.4 | 0.15±0.01 |
14 | 12.7 ± 0.78 | - | - | 170.1 ± 26.7 | 0.16±0.02 |
In the presence of P. tricornutum | |||||
1 | 9.04±0.44 | - | - | 101.4 ± 4.86 | 0.22±0.03 |
4 | 9.80±1.68 | - | - | 73.3 ± 1.84 | 0.23±0.02 |
7 | 8.94±0.14 | - | - | 69.1 ± 1.66 | 0.26±0.04 |
10 | 8.50±0.03 | - | - | 92.7 ± 7.70 | 0.25±0.03 |
14 | 10.1 ± 0.70 | - | - | 127.5 ± 3.39 | 0.26±0.02 |
In the presence of the symbiotic system | |||||
1 | 10.4 ± 0.86 | 50.0 ± 0.15 | 7.45±0.71 | 47.2 ± 1.20 | 0.16±0.02 |
4 | 10.0 ± 1.27 | 57.9 ± 4.34 | 5.32±1.77 | 46.4 ± 8.54 | 0.20±0.01 |
7 | 9.93±0.13 | 97.8 ± 2.77 | 7.28±0.59 | 78.5 ± 2.69 | 0.13±0.01 |
10 | 8.72±1.20 | 24.2 ± 3.08 | 8.98±1.17 | 322.3 ± 19.0 | 0.12±0.01 |
14 | 13.1 ± 1.58 | 174.6 ± 14.9 | 18.4 ± 2.45 | 221.7 ± 5.80 | 0.15±0.01 |
Table 1. Electrochemical parameters from the curve-fitting of EIS spectra of CS during the 14-day incubation.
Duration (day) | Rs (Ω cm2) | QfY (μS cm−2 sn) | Rf (×104 Ω cm2) | QdlY (×10−5 Ω−1cm−2 sn) | Rct (×104 Ω cm2) |
---|---|---|---|---|---|
In the absence of B. altitudinis | |||||
1 | 21.5 ± 1.08 | - | - | 11.1 ± 1.04 | 2.55±0.51 |
4 | 20.3 ± 0.45 | - | - | 10.5 ± 0.95 | 4.06±0.51 |
7 | 19.7 ± 0.14 | - | - | 10.7 ± 0.63 | 4.67±0.57 |
10 | 19.4 ± 3.01 | - | - | 10.4 ± 0.82 | 5.49±0.62 |
14 | 17.9 ± 0.93 | - | - | 11.2 ± 0.32 | 5.87±0.46 |
In the presence of B. altitudinis | |||||
1 | 20.5 ± 1.86 | 5.31±0.38 | 2.00±0.66 | 11.6 ± 3.34 | 1.31±0.36 |
4 | 17.9 ± 1.54 | 5.08±0.63 | 1.48±0.16 | 7.71±0.90 | 2.91±0.64 |
7 | 17.6 ± 1.38 | 5.57±0.39 | 1.73±0.47 | 8.23±0.67 | 3.44±0.36 |
10 | 17.5 ± 1.95 | 6.45±0.79 | 1.47±0.66 | 8.91±0.54 | 3.98±0.91 |
14 | 16.4 ± 1.17 | 7.31±1.07 | 0.72±0.10 | 9.17±0.97 | 3.06±0.77 |
In the absence of the starved B. altitudinis | |||||
1 | 21.4 ± 0.76 | - | - | 25.4 ± 2.84 | 0.19±0.04 |
4 | 22.3 ± 0.82 | - | - | 11.2 ± 1.31 | 5.25±0.63 |
7 | 22.0 ± 0.56 | - | - | 12.7 ± 1.60 | 6.49±0.62 |
10 | 21.6 ± 1.03 | - | - | 13.9 ± 1.88 | 7.09±1.43 |
14 | 21.1 ± 0.38 | - | - | 15.5 ± 2.09 | 8.87±1.61 |
In the presence of the starved B. altitudinis | |||||
1 | 19.4 ± 2.54 | - | - | 17.3 ± 0.78 | 0.21±0.03 |
4 | 19.4 ± 2.12 | - | - | 11.6 ± 0.46 | 6.03±0.18 |
7 | 18.6 ± 2.46 | - | - | 13.1 ± 0.60 | 6.35±0.22 |
10 | 17.9 ± 2.47 | - | - | 14.6 ± 0.88 | 6.82±0.65 |
14 | 17.3 ± 2.64 | - | - | 15.7 ± 0.95 | 8.05±0.84 |
In the absence of the symbiotic system | |||||
1 | 10.1 ± 0.81 | - | - | 27.7 ± 0.01 | 0.21±0.02 |
4 | 11.0 ± 1.77 | - | - | 82.2 ± 4.94 | 0.17±0.01 |
7 | 11.4 ± 0.64 | - | - | 101.5 ± 7.10 | 0.17±0.01 |
10 | 11.8 ± 0.75 | - | - | 131.4 ± 12.4 | 0.15±0.01 |
14 | 12.7 ± 0.78 | - | - | 170.1 ± 26.7 | 0.16±0.02 |
In the presence of P. tricornutum | |||||
1 | 9.04±0.44 | - | - | 101.4 ± 4.86 | 0.22±0.03 |
4 | 9.80±1.68 | - | - | 73.3 ± 1.84 | 0.23±0.02 |
7 | 8.94±0.14 | - | - | 69.1 ± 1.66 | 0.26±0.04 |
10 | 8.50±0.03 | - | - | 92.7 ± 7.70 | 0.25±0.03 |
14 | 10.1 ± 0.70 | - | - | 127.5 ± 3.39 | 0.26±0.02 |
In the presence of the symbiotic system | |||||
1 | 10.4 ± 0.86 | 50.0 ± 0.15 | 7.45±0.71 | 47.2 ± 1.20 | 0.16±0.02 |
4 | 10.0 ± 1.27 | 57.9 ± 4.34 | 5.32±1.77 | 46.4 ± 8.54 | 0.20±0.01 |
7 | 9.93±0.13 | 97.8 ± 2.77 | 7.28±0.59 | 78.5 ± 2.69 | 0.13±0.01 |
10 | 8.72±1.20 | 24.2 ± 3.08 | 8.98±1.17 | 322.3 ± 19.0 | 0.12±0.01 |
14 | 13.1 ± 1.58 | 174.6 ± 14.9 | 18.4 ± 2.45 | 221.7 ± 5.80 | 0.15±0.01 |
Fig. 3. Potentiodynamic polarization curves of coupons immersed in different culture media after 14 days: (a) the B. altitudinis and sterile LB media, (b) the P. tricornutum, the symbiotic system and the sterile F/2 media, (c) the improved B. altitudinis and sterile improved LB media, (d) the starved B. altitudinis and sterile starved LB media.
Empty Cell | icorr (μA cm−2) | Ecorr (V vs. SCE) |
---|---|---|
In the presence of B. altitudinis | 3.39±1.08 | −0.76±0.02 |
In the absence of B. altitudinis | 1.56±0.10 | −0.72±0.03 |
In the presence of P. tricornutum | 12.6 ± 0.3 | −0.89±0.03 |
In the presence of the symbiotic system | 26.2 ± 0.95 | −0.82±0.07 |
In the absence of the symbiotic system | 7.01±0.41 | −0.79±0.01 |
Table 2. Electrochemical parameters calculated from the potentiodynamic polarization curves during the 14-day incubation.
Empty Cell | icorr (μA cm−2) | Ecorr (V vs. SCE) |
---|---|---|
In the presence of B. altitudinis | 3.39±1.08 | −0.76±0.02 |
In the absence of B. altitudinis | 1.56±0.10 | −0.72±0.03 |
In the presence of P. tricornutum | 12.6 ± 0.3 | −0.89±0.03 |
In the presence of the symbiotic system | 26.2 ± 0.95 | −0.82±0.07 |
In the absence of the symbiotic system | 7.01±0.41 | −0.79±0.01 |
Fig. 4. Pitting corrosion morphologies of the coupon surfaces immersed in the biotic and sterile media and pitting statistical analysis: the optical and the largest pit depth morphologies in the B. altitudinis (a-a2), sterile LB control (b-b2), P. tricornutum (c-c2), symbiotic system (d-d2), and sterile F/2 (e-e2), the statistics of pitting depth of CS coupons immersed in (f) the B. altitudinis and sterile LB media (g) the P. tricornutum and sterile F/2 media.
Fig. 5. Morphologies of CS exposed in the B. altitudinis, P. tricornutum and the symbiotic system for 7-day and 14-day incubation: (a) SEM and Live/dead images (2D and 3D), (b) live and dead cell numbers, and (c) the optical densities.
Fig. 6. High-resolution XPS spectra of (a) O 1S and (b) Fe 2p of B. altitudinis and the sterile LB media, (c) O 1 s, (d) Fe 2p of the symbiotic system and sterile F/2 media, and (e) S 2p of the symbiotic system, (f) the wide‐scan spectra.
Fig. 7. Ion concentration and algal activity results: (a) 7- and 14-day cumulative iron concentration, (b) variation of pH during the cultivation, (c) bioactivity of the P. tricornutum, and (d) gene expression of Rubisco in the presence and absence of CPs after 14-day incubation.
[1] | S. Mieszkin, M.E. Callow, J.A. Callow, Biofouling 29 (2013) 1097-1113. |
[2] | W.B.P. van den Broek, M.J. Boorsma, H. Huiting, M.G. Dusamos, S. van Agtmaal, Water Pract. Technol. 5 (2010) 1-11. |
[3] |
H.C. Flemming, Water Res. 173 (2020) 115576.
DOI URL |
[4] |
Z.Y. Soon, J.H. Jung, C. Yoon, J.H. Kang, M. Kim, J. Hazard. Mater. 403 (2021) 123708.
DOI URL |
[5] |
H.C. Flemming, J. Wingender, Nat. Rev. Microbiol. 8 (2010) 623-633.
DOI URL |
[6] |
Y. Dong, Y. Lekbach, Z. Li, D. Xu, S. El Abed, S. Ibnsouda Koraichi, F. Wang, J. Mater. Sci. Technol. 37 (2020) 200-206.
DOI URL |
[7] |
W.G. Characklis, Biotechnol. Bioeng. 23 (1981) 1923-1960.
DOI URL |
[8] |
Y. Lou, C. Dai, W. Chang, H. Qian, L. Huang, C. Du, D. Zhang, Corros. Sci. 165 (2020) 108390.
DOI URL |
[9] |
Y. Li, S. Feng, H. Liu, X. Tian, Y. Xia, M. Li, K. Xu, H. Yu, Q. Liu, C. Chen, Corros. Sci. 167 (2020) 108512.
DOI URL |
[10] | D. Xu, J. Xia, E. Zhou, D. Zhang, H. Li, C. Yang, Q. Li, H. Lin, X. Li, K. Yang, Bioelectrochemistry 113 (2017) 1-8. |
[11] |
N. Wurzler, J.D. Schutter, R. Wagner, M. Dimper, D. Lützenkirchen-Hecht, O. Oz- can, Corros. Sci. 174 (2020) 108855.
DOI URL |
[12] |
X. Yang, J. Shao, Z. Liu, D. Zhang, L. Cui, C. Du, X. Li, Corros. Sci. 173 (2020) 108746.
DOI URL |
[13] |
H. Liu, D. Xu, K. Yang, H. Liu, Y.F. Cheng, Corros. Sci. 132 (2018) 46-55.
DOI URL |
[14] |
Y. Zhao, E. Zhou, D. Xu, Y. Yang, Y. Zhao, T. Zhang, T. Gu, K. Yang, F. Wang, Corros. Sci. 143 (2018) 281-291.
DOI URL |
[15] |
H.Y. Tang, C. Yang, T. Ueki, C.C. Pittman, D. Xu, T.L. Woodard, D.E. Holmes, T. Gu, F. Wang, D.R. Lovley, ISME J. 15 (2021) 3084-3093.
DOI URL |
[16] | D. Xu, Y. Li, T. Gu, Bioelectrochemistry 110 (2016) 52-58. |
[17] |
L. Vanysacker, B. Boerjan, P. Declerck, I.F.J. Vankelecom, Appl. Microbiol. Biotechnol. 98 (2014) 8047-8072.
DOI PMID |
[18] |
P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton, Ann. Rev. Microbiol. 56 (2002) 187-209.
DOI URL |
[19] |
R. Ramanan, B.H. Kim, D.H. Cho, H.M. Oh, H.S. Kim, Biotechnol. Adv. 34 (2016) 14-29.
DOI URL |
[20] |
X. Ji, M. Jiang, J. Zhang, X. Jiang, Z. Zheng, Bioresour. Technol. 247 (2018) 44-50.
DOI URL |
[21] | J.A. Christie-Oleza, D. Sousoni, M. Lloyd, J. Armengaud, D.J. Scanlan, Nat. Mi- crobiol. 2 (2017) 17100. |
[22] | M.B. Program, Nat. Toxins 74 (1995) 365-374. |
[23] |
A. Kouzuma, K. Watanabe, Curr. Opin. Biotechnol. 33 (2015) 125-129.
DOI URL |
[24] | A. Bera, J.S. Trivedi, S.B. Kumar, A.K.S. Chandel, S. Haldar, S.K. Jewrajka, J. Haz- ard. Mater. 343 (2018) 86-97. |
[25] |
J.T. Koning, U.E. Bollmann, K. Bester, J. Hazard. Mater. 406 (2021) 124755.
DOI URL |
[26] | D. Xu, J. Xia, E. Zhou, D. Zhang, H. Li, C. Yang, Q. Li, H. Lin, X. Li, K. Yang, Bioelectrochemistry 113 (2017) 1-8. |
[27] |
E. Zhou, D. Qiao, Y. Yang, D. Xu, Y. Lu, J. Wang, J.A. Smith, H. Li, H. Zhao, P.K. Liaw, F. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
[28] |
J. Jiang, D. Xu, T. Xi, M.B. Shahzad, M.S. Khan, J. Zhao, X. Fan, C. Yang, T. Gu, K. Yang, Corros. Sci. 113 (2016) 46-56.
DOI URL |
[29] | L. Nan, Y. Liu, M. Lü, K. Yang, J. Mater. Sci.: Mater. Med. 19 (2008) 3057-3062. |
[30] |
L. Nan, D. Xu, T. Gu, X. Song, K. Yang, Mater. Sci. Eng. C 48 (2015) 228-234.
DOI URL |
[31] |
D. Xu, E. Zhou, Y. Zhao, H. Li, Z. Liu, D. Zhang, C. Yang, H. Lin, X. Li, K. Yang, J. Mater. Sci. Technol. 34 (2018) 1325-1336.
DOI URL |
[32] |
Y. Xiao, Y. Liu, C. Ma, T. Muhammad, B. Zhou, Y. Zhou, P. Song, Y. Li, J. Hazard. Mater. 401 (2021) 123265.
DOI URL |
[33] |
J. George, M. Purushothaman, I. Singh, I. Singh, V.K. Vaidyanathan, J. Hazard. Mater. 424 (2022) 127467.
DOI URL |
[34] | A. Mishra, B.D. Tripathi, A.K. Rai, Int. J. Environ. Sci. Technol. 12 (2015) 3443-3456. |
[35] |
C.M. Moore, M.M. Mills, K.R. Arrigo, I. Berman-Frank, L. Bopp, P.W. Boyd, E. D. Galbraith, R.J. Geider, C. Guieu, S.L. Jaccard, T.D. Jickells, J. La Roche, T.M. Lenton, N.M. Mahowald, E. Marañón, I. Marinov, J.K. Moore, T. Nakatsuka, A. Oschlies, M.A. Saito, T.F. Thingstad, A. Tsuda, O. Ulloa, Nat. Geosci. 6 (2013) 701-710.
DOI URL |
[36] | P.W. Boyd, T. Jickells, C.S. Law, S. Blain, E.A. Boyle, K.O. Buesseler, K.H. Coale, J.J. Cullen, H.J.W. De Baar, M. Follows, M. Harvey, C. Lancelot, M. Levasseur, N.P.J. Owens, R. Pollard, R.B. Rivkin, J. Sarmiento, V. Schoemann, V. Smetacek, S. Takeda, A. Tsuda, S. Turner, A.J. Watson, Science 315 (2007) 612-617. |
[37] | J.B. McQuaid, A.B. Kustka, M. Oborník, A. Horák, J.P. McCrow, B.J. Karas, H. Zheng, T. Kindeberg, A.J. Andersson, K.A. Barbeau, A.E. Allen, Nature 555 (2018) 534-537. |
[38] |
A.J. Spark, D.W. Law, L.P. Ward, I.S. Cole, A.S. Best, Environ. Sci. Technol. 51 (2017) 8501-8509.
DOI PMID |
[39] |
Y. Wu, Y. Xia, X. Jing, P. Cai, A.D. Igalavithana, C. Tang, D.C.W. Tsang, Y.S. Ok, J. Hazard. Mater. 382 (2020) 120976.
DOI URL |
[40] | Y. Dong, B. Jiang, D. Xu, C. Jiang, Q. Li, T. Gu, Bioelectrochemistry 123 (2018) 34-44. |
[41] |
F. Lananan, A. Jusoh, N. Ali, S.S. Lam, A. Endut, Bioresour. Technol. 141 (2013) 75-82.
DOI URL |
[42] |
H. Liu, D. Xu, A.Q. Dao, G. Zhang, Y. Lv, H. Liu, Corros. Sci. 101 (2015) 84-93.
DOI URL |
[43] | T. Mutanda, D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj, F. Bux, Biore- sour. Technol. 102 (2011) 57-70. |
[44] |
L. Huang, Y. Huang, Y. Lou, H. Qian, D. Xu, L. Ma, C. Jiang, D. Zhang, Corros. Sci. 164 (2020) 108355.
DOI URL |
[45] | D.R. Colquhoun, E.M. Hartmann, R.U. Halden, J. Biomed. Biotechnol. 9 (2012) 408690. |
[46] |
D. Liu, H. Yang, J. Li, J. Li, Y. Dong, C. Yang, Y. Jin, L. Yassir, Z. Li, D. Hernandez, D. Xu, F. Wang, J.A. Smith, J. Mater. Sci. Technol. 79 (2021) 101-108.
DOI URL |
[47] | Y. Su, S. Cestellos-Blanco, J.M. Kim, Y. xiao Shen, Q. Kong, D. Lu, C. Liu, H. Zhang, Y. Cao, P. Yang, Joule 4 (2020) 800-811. |
[48] | X. Hou, Y. Hu, A. Grinthal, M. Khan, J. Aizenberg, Nature 519 (2015) 70-73. |
[49] | M.S. Khan, C. Yang, Y. Zhao, H. Pan, J. Zhao, M.B. Shahzad, S.K. Kolawole, I. Ul- lah, K. Yang, Colloids Surf. B 189 (2020) 110858. |
[50] |
D. Zhang, S. Beer, H. Li, K. Gao, Algal Res. 52 (2020) 102094.
DOI URL |
[51] |
K.M. Deamici, S.P. Cuellar-Bermudez, K. Muylaert, L.O. Santos, J.A.V. Costa, Bioresour. Technol. 292 (2019) 121945.
DOI URL |
[52] |
B. Le Rouzic, Estuar. Coast. Shelf Sci. 115 (2012) 326-333.
DOI URL |
[53] | G.T. Sousa, M.C.L. Neto, R.B. Choueri, Í.B. Castro, Aquat. Toxicol. 230 (2021) 1-9. |
[54] |
R.I. Papry, S. Fujisawa, Z. Yinghan, O. Akhyar, M.A. Al Mamun, A.S. Mashio, H. Hasegawa, Ecotoxicol. Environ. Saf. 201 (2020) 110797.
DOI URL |
[55] |
Z. Lin, B. Chen, L. Zhao, Sci. Total Environ. 724 (2020) 137691.
DOI URL |
[56] |
S. Wu, A. Huang, B. Zhang, L. Huan, P. Zhao, A. Lin, G. Wang, Biotechnol. Bio- fuels 8 (2015) 78.
DOI URL |
[57] |
R. Liu, K. Memarzadeh, B. Chang, Y. Zhang, Z. Ma, R.P. Allaker, L. Ren, K. Yang, Sci. Rep. 6 (2016) 1-10.
DOI URL |
[58] |
C. Bougault, A. Paumier, E. Aubert-Foucher, F. Mallein-Gerin, BMC Biotechnol. 8 (2008) 1-10.
DOI URL |
[59] |
H. Li, E. Zhou, Y. Ren, D. Zhang, D. Xu, C. Yang, H. Feng, Z. Jiang, X. Li, T. Gu, K. Yang, Corros. Sci. 111 (2016) 811-821.
DOI URL |
[60] |
Y. Yang, M. Masoumeh, E. Zhou, D. Liu, Y. Song, D. Xu, F. Wang, J.A. Smith, Corros. Sci. 182 (2021) 109286.
DOI URL |
[61] |
Y. Huang, E. Zhou, C. Jiang, R. Jia, S. Liu, D. Xu, T. Gu, F. Wang, Electrochem. Commun. 94 (2018) 9-13.
DOI URL |
[62] |
S. Heidarian, F. Mohammadipanah, A. Maghsoudlou, Y. Dashti, G.L. Challis, Front. Microbiol. 10 (2019) 1-14.
DOI URL |
[63] |
G.T. Burstein, D.H. Davies, Corros. Sci. 20 (1980) 1143-1155.
DOI URL |
[64] |
Y. Dong, J. Li, D. Xu, G. Song, D. Liu, H. Wang, M. Saleem Khan, K. Yang, F. Wang, J. Mater. Sci. Technol. 64 (2021) 176-186.
DOI URL |
[65] |
M.S. Guzman, K. Rengasamy, M.M. Binkley, C. Jones, T.O. Ranaivoarisoa, R. Singh, D.A. Fike, J.M. Meacham, A. Bose, Nat. Commun. 10 (2019) 1-13.
DOI URL |
[66] |
R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeterior. Biodegrad. 137 (2019) 42-58.
DOI URL |
[67] |
H. Liu, M. Sharma, J. Wang, Y.F. Cheng, H. Liu, Int. Biodeterior. Biodegrad. 129 (2018) 209-216.
DOI URL |
[68] |
E.A. Lysenko, A. A. Klaus, A. V. Kartashov, V.V. Kusnetsov, Plant Physiol. Biochem. 147 (2020) 191-204.
DOI URL |
[69] | K. Naito, M. Matsui, I. Imai, Harmful Algae 4 (2005) 1021-1032. |
[70] | J.Y. Bhat, G. Thieulin-Pardo, F.U. Hartl, M. Hayer-Hartl, Front. Mol. Biosci. 4 (2017) 1-10. |
[71] |
X. Zeng, P. Jin, J. Xia, Y. Liu, J. Appl. Phycol. 31 (2019) 123-129.
DOI URL |
[72] |
A.M.C. Heureux, J.N. Young, S.M. Whitney, M.R. Eason-Hubbard, R.B.Y. Lee, R.E. Sharwood, R.E.M. Rickaby, J. Exp. Bot. 68 (2017) 3959-3969.
DOI PMID |
[73] |
M.S. Guzman, K. Rengasamy, M.M. Binkley, C. Jones, T.O. Ranaivoarisoa, R. Singh, D.A. Fike, J.M. Meacham, A. Bose, Nat. Commun. 10 (2019) 1-13.
DOI URL |
[74] | E. Jensen, R. Clément, S.C. Maberly, B. Gontero, Philos. Trans. R. Soc. B Biol. Sci. 372 (2017) 1728. |
[1] | Junlei Wang, Hongfang Liu, Magdy El-Said Mohamed, Mazen A.Saleh, Tingyue Gu. Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A [J]. J. Mater. Sci. Technol., 2022, 107(0): 43-51. |
[2] | Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels [J]. J. Mater. Sci. Technol., 2022, 109(0): 86-93. |
[3] | Xin Wei, Junhua Dong, Nan Chen, Amar Prasad Yadav, Qiying Ren, Jie Wei, Changgang Wang, Rongyao Ma, Wei Ke. Effects of bentonite content on the corrosion evolution of low carbon steel in simulated geological disposal environment [J]. J. Mater. Sci. Technol., 2021, 66(0): 46-56. |
[4] | Zibo Pei, Xuequn Cheng, Xiaojia Yang, Qing Li, Chenhan Xia, Dawei Zhang, Xiaogang Li. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64(0): 214-221. |
[5] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[6] | Junlei Wang, Tiansui Zhang, Xinxin Zhang, Muhammed Asif, Lipei Jiang, Shuang Dong, Tingyue Gu, Hongfang Liu. Inhibition effects of benzalkonium chloride on Chlorella vulgaris induced corrosion of carbon steel [J]. J. Mater. Sci. Technol., 2020, 43(0): 14-20. |
[7] | Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 41(0): 1-11. |
[8] | Lin Pang, Zhengbin Wang, Yugui Zheng, Xueming Lai, Xu Han. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products [J]. J. Mater. Sci. Technol., 2020, 54(0): 95-104. |
[9] | Fang Xue, Xin Wei, Junhua Dong, Changgang Wang, Wei Ke. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35(4): 596-603. |
[10] | Tingyue Gu, Ru Jia, Tuba Unsal, Dake Xu. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35(4): 631-636. |
[11] | Wenhua Xu, En-Hou Han, Zhenyu Wang. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution [J]. J. Mater. Sci. Technol., 2019, 35(1): 64-75. |
[12] | Fang Xue, Xin Wei, Junhua Dong, Ini-Ibehe Nabuk Etim, Changgang Wang, Wei Ke. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34(8): 1349-1358. |
[13] | Haigang Xiao, Wei Ye, Xiaoping Song, Yuantai Ma, Ying Li. Formation process of akaganeite in the simulated wet-dry cycles atmospheric environment [J]. J. Mater. Sci. Technol., 2018, 34(8): 1387-1396. |
[14] | Canshuai Liu, Jianqiu Wang, Zhiming Zhang, En-Hou Han, Wei Liu, Dong Liang, Zhongtian Yang, Xingzhong Cao. Effect of cumulative gamma irradiation on microstructure and corrosion behaviour of X65 low carbon steel [J]. J. Mater. Sci. Technol., 2018, 34(11): 2131-2139. |
[15] | F.C.Liu, Y.Hovanski, M.P.Miles, C.D.Sorensen, T.W.Nelson. A review of friction stir welding of steels: Tool, material flow, microstructure, and properties [J]. J. Mater. Sci. Technol., 2018, 34(1): 39-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||