J. Mater. Sci. Technol. ›› 2022, Vol. 128: 98-106.DOI: 10.1016/j.jmst.2022.01.044
• Research Article • Previous Articles Next Articles
Xu K.a, Liu J.D.b,*(), van der Zwaag S.c, Xu W.d, Li J.G.b,*(
)
Received:
2021-12-26
Revised:
2022-01-16
Accepted:
2022-01-18
Published:
2022-11-20
Online:
2022-11-22
Contact:
Liu J.D.,Li J.G.
About author:
jgli@imr.ac.cn (J.G. Li).Xu K., Liu J.D., van der Zwaag S., Xu W., Li J.G.. Numerical simulation of precipitation kinetics in multicomponent alloys[J]. J. Mater. Sci. Technol., 2022, 128: 98-106.
Empty Cell | N0 (m-3) | σ (mJ m-2) | Va (m3) | Vmγ′ (m3 mol-1) | a (m) |
---|---|---|---|---|---|
(A) | 3 × 1027 | 28.5 | 1.09 × 10-29 | 6.59 × 10-6 | 3.4 × 10-10 |
(B) | 8 × 1027 | 30 | 1.09 × 10-29 | 6.59 × 10-6 | 3.4 × 10-10 |
Table 1. Input parameters for alloys (A) Ni-7.5Al-8.5Cr at.% and (B) Ni-5.2Al-14.2Cr at.%.
Empty Cell | N0 (m-3) | σ (mJ m-2) | Va (m3) | Vmγ′ (m3 mol-1) | a (m) |
---|---|---|---|---|---|
(A) | 3 × 1027 | 28.5 | 1.09 × 10-29 | 6.59 × 10-6 | 3.4 × 10-10 |
(B) | 8 × 1027 | 30 | 1.09 × 10-29 | 6.59 × 10-6 | 3.4 × 10-10 |
Fig. 1. Temporal evolution of (a) and (b) number density, Nt, (c) and (d) average radius, Ravg, and (e) and (f) volume fraction, $f_{t}^{\ {{\gamma }^{\prime }}}$, of γ′ precipitates in alloys (A) Ni-7.5Al-8.5Cr at.% and (B) Ni-5.2Al-14.2Cr at.% at 873 K isothermal ageing. The black dots correspond to the experimental data of Booth-Morrison et al. [16].
Fig. 2. Temporal evolution of the relationship between average radius, Ravg, and effective radius, ${{r}_{\text{eff}}}$(which can be seen equally as critical radius,${{r}^{*}}$), in the alloy (A) Ni-7.5Al-8.5Cr at.% at 873 K isothermal ageing.
Fig. 3. Time dependencies of (a) number density, Nt, and (b) average radius, Ravg, in alloy (A) Ni-7.5Al-8.5Cr at.% at 873 K isothermal ageing, after 104 s.
Fig. 4. Compositional trajectories of γ matrix and γ′ phase for alloys (A) Ni-7.5Al-8.5Cr at.% (red line) and (B) Ni-5.2Al-14.2Cr at.% (blue line) during isothermal ageing, in a partial Ni-Al-Cr ternary phase diagram at 873K, calculated by Thermo-Calc, employing the TCNi8 database. Two types of drawn equilibrium solvus curves are determined by Thermo-Calc utilizing databases from Saunders [28] (black dash line) and Dupin and Sundman [29] (gray line), respectively. The experimental APT data of compositional evolution in the γ matrix and γ′ phase for alloys (A) Ni-7.5Al-8.5Cr at.% (open red circles) and (B) Ni-5.2Al-14.2Cr at.% (open blue circles) are extracted from the work of Booth-Morrison et al. [16].
Fig. 5. Temporal evolution of compositions in γ matrix and γ′ phase for alloys (A) Ni-7.5Al-8.5Cr at.% (red line) and (B) Ni-5.2Al-14.2Cr at.% (blue line) at 873 K isothermal ageing. The equilibrium compositions at 873K for alloys (A) Ni-7.5Al-8.5Cr at.% (red short dash line) and (B) Ni-5.2Al-14.2Cr at.% (blue short dash line) are calculated by Thermo-Calc and TCNi8 database.
Fig. 6. Influence of compositional variation of Al on (a) number density, Nt, (b) average radius, Ravg, and (c) volume fraction, $f_{t}^{{{\gamma }'}}$, of γ′ precipitates as a function of time in the alloy (A) Ni-7.5Al-8.5Cr at. % at 873 K isothermal ageing.
Fig. 7. Influence of compositional variation of Al on (a) chemical driving force for precipitation, $\text{ }\!\!\Delta\!\!\text{ }G_{\text{V}}^{\ \gamma \prime }$, (b) nucleation barrier, $\text{ }\!\!\Delta\!\!\text{ }{{G}^{*}}$, and (c) nucleation rate, I, of γ′ precipitates as a function of time in the alloy (A) Ni-7.5Al-8.5Cr at.% at 873 K isothermal ageing. The inserted zoom shows the time points when nucleation finish and their positions on chemical driving force curves, for different Al content.
Fig. 8. Influence of modifying diffusion distance on (a) number density, Nt, (b) average radius, Ravg, and (c) volume fraction, $f_{t}^{{{\gamma }'}}$, of γ′ precipitates as a function of time in the alloy (A) Ni-7.5Al-8.5Cr at.% at 873 K isothermal ageing (traditional diffusion distance setting, $\partial $r?=?R: red lines, modified diffusion distance, $\partial $r?=?RV – R: blue short dot lines).
Fig. 9. Spatial distribution of precipitates and Voronoi cells within a 100 nm×100 nm×100 nm characteristic cell at different time points in the alloy (A) Ni-7.5Al-8.5Cr at.% at 873 K isothermal ageing (the compartmentalization of particle distribution can meet the criteria that each particle is within one Voronoi cell).
[1] |
D. Giofré, T. Junge, W.A. Curtin, M. Ceriotti, Acta Mater. 140 (2017) 240-249.
DOI URL |
[2] | M.S. Bhaskar, Comput. Mater. Sci. 146 (2018) 102-111. |
[3] |
M. Bonvalet, T. Philippe, X. Sauvage, D. Blavette, Acta Mater. 100 (2015) 169-177.
DOI URL |
[4] |
L. Rougier, A. Jacot, C.A. Gandin, P.D. Napoli, P.Y. Théry, D. Ponsen, V. Jaquet, Acta Mater. 61 (2013) 6396-6405.
DOI URL |
[5] | R. Kampmann, R. Wagner, in: P. Haasen, V. Gerold, R. Wagner (Eds.), Decom- position of Alloys: The Early Stages, Pergamon Press, Oxford, 1984, pp. 91-103. |
[6] |
H. Guo, M. Enomoto, C.J. Shang, Comput. Mater. Sci. 141 (2018) 101-113.
DOI URL |
[7] |
Q. Du, K. Tang, C.D. Marioara, S.J. Andersen, B. Holmedal, R. Holmestad, Acta Mater. 122 (2017) 178-186.
DOI URL |
[8] |
M. Perez, M. Dumont, D. Acevedo-Reyes, Acta Mater. 56 (2008) 2119-2132.
DOI URL |
[9] |
Q. Chen, J. Jeppsson, J. Ågren, Acta Mater. 56 (2008) 1890-1896.
DOI URL |
[10] |
C. Zener, J. Appl. Phys. 20 (1949) 950-953.
DOI URL |
[11] | C.N. Nanev, Theory of Nucleatio, Handbook of Crystal Growth, Second Edition, Elsevier, Boston, 2015. |
[12] | J. Agren, M.T. Mora, G.Inden J.Golcheski, H. Kumar, C. Sigli, Calphad-Comput. Coupling Ph. Diagrams Thermochem. 24 (2000) 41-54. |
[13] | D.A. Porter, K.E. Easterling,Phase Transformations in Metals and Alloys (re- vised reprint), Chemical Rubber Company Press, Florida, 2009. |
[14] |
A. Azzam, T. Philippe, A. Hauet, F. Danoix, D. Locq, P. Caron, D. Blavette, Acta Mater. 145 (2018) 377-387.
DOI URL |
[15] | M. Kvasnica, P. Grieder, M. Baotic, M. Morari, 2004. |
[16] |
C. Booth-Morrison, J. Weninger, C.K. Sudbrack, Z. Mao, R.D. Noebe, D.N. Seid- man, Acta Mater. 56 (2008) 3422-3438.
DOI URL |
[17] |
Z.G. Mao, C. Booth-Morrison, C.K. Sudbrack, G. Martin, D.N. Seidman, Acta Mater. 60 (2012) 1871-1888.
DOI URL |
[18] | I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50. |
[19] |
S. Bahl, L. Xiong, L.F. Allard, R.A. Michi, J.D. Poplawsky, A.C. Chuang, D. Singh, T.R. Watkins, D. Shin, J.A. Haynes, A. Shyam, Mater. Des. 198 (2021) 109378.
DOI URL |
[20] |
C.K.L. Davies, P. Nash, R.N. Stevens, Acta Metall. 28 (1980) 179-189.
DOI URL |
[21] |
J. Svoboda, F.D. Fischer, Acta Mater. 79 (2014) 304-314.
DOI URL |
[22] |
Q. Zhang, S.K. Makineni, J.E. Allison, J.C. Zhao, Scr. Mater. 160 (2019) 70-74.
DOI URL |
[23] | J.D. Robson, Modelling the overlap of nucleation, Acta Mater. 52 (2004) 4669-4676. |
[24] | W.E. Frazier, T.G. Lach, T.S. Byun, Acta Mater 194 (2020) 1-12. |
[25] |
M. Wang, S. Guo, X. Lin, W.D. Huang, Mater. Lett. 285 (2021) 129206.
DOI URL |
[26] |
J. Ženíšek, E. Kozeschnik, J. Svoboda, F.D. Fischer, Acta Mater. 91 (2015) 365-376.
DOI URL |
[27] |
J. Zhu, T. Zhang, Y. Yang, C.T. Liu, Acta Mater. 166 (2019) 560-571.
DOI URL |
[28] | N. Saunders,8th International Symposium on Superalloys, Champion, PA, September22-26, 1996. |
[29] |
N. Dupin, B. Sundman, Scand. J. Metall. 30 (2001) 184-192.
DOI URL |
[30] |
Y.Q. Chen, E. Francis, J. Robson, M. Preuss, S.J. Haigh, Acta Mater. 85 (2015) 199-206.
DOI URL |
[31] |
C. Ioannidou, Z. Arechabaleta, A. Navarro-López, A. Rijkenberg, R.M. Dalgliesh, S. Kölling, V. Bliznuk, C. Pappas, J. Sietsma, A. A. van Well, S.E. Offerman, Acta Mater. 181 (2019) 10-24.
DOI URL |
[32] |
A. Miotti Bettanini, L. Ding, J.D. Mithieux, C. Parrens, H. Idrissi, D. Schryvers, L. Delannay, T. Pardoen, P.J. Jacques, Mater. Des. 162 (2019) 362-374.
DOI URL |
[33] |
F. Masoumi, M. Jahazi, D. Shahriari, J. Cormier, J. Alloy. Compd. 658 (2016) 981-995.
DOI URL |
[34] |
J.C. Zhang, L. Liu, T.W. Huang, J. Chen, K.L. Cao, X.X. Liu, J. Zhang, H.Z. Fu, J. Mater. Sci. Technol. 62 (2021) 1-10.
DOI URL |
[35] |
K. Kim, P.W. Voorhees, Acta Mater. 152 (2018) 327-337.
DOI URL |
[36] | R. Hu, S.B. Jin, G. Sha, Prog. Mater. Sci. (2020) 100740. |
[1] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[2] | Zhang Jingjing, Qi Xiaosi, Gong Xiu, Peng Qiong, Chen Yanli, Xie Ren, Zhong Wei. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption [J]. J. Mater. Sci. Technol., 2022, 128(0): 59-70. |
[3] | C.Z. Fang, H.C. Basoalto, M.J. Anderson, H.Y. Li, S.J. Williams, P. Bowen. A numerical study on the influence of grain boundary oxides on dwell fatigue crack growth of a nickel-based superalloy✩ [J]. J. Mater. Sci. Technol., 2022, 104(0): 224-235. |
[4] | Quanqing Zeng, Kefu Gan, Fei Chen, Dongyao Wang, Songsheng Zeng. Interstitial concentration effects on incipient plasticity and dislocation behaviors of face-centered cubic FeNiCr multicomponent alloys based on nanoindentation [J]. J. Mater. Sci. Technol., 2022, 112(0): 212-221. |
[5] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
[6] | Hongcan Chen, Wei Xu, Qun Luo, Qian Li, Yu Zhang, Jingjing Wang, Kuo-Chih Chou. Thermodynamic prediction of martensitic transformation temperature in Fe-C-X (X=Ni, Mn, Si, Cr) systems with dilatational coefficient model [J]. J. Mater. Sci. Technol., 2022, 112(0): 291-300. |
[7] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[8] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
[9] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[10] | Jingbin Zhang, Yinrui Sun, Zhijie Ji, Haiwen Luo, Feng Liu. Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability [J]. J. Mater. Sci. Technol., 2021, 75(0): 139-153. |
[11] | Qiang Ren, Yuexin Zhang, Ying Ren, Lifeng Zhang, Jujin Wang, Yadong Wang. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab [J]. J. Mater. Sci. Technol., 2021, 61(0): 147-158. |
[12] | Hui Yong, Shihai Guo, Zeming Yuan, Yan Qi, Dongliang Zhao, Yanghuan Zhang. Phase transformation, thermodynamics and kinetics property of Mg90Ce5RE5 (RE = La, Ce, Nd) hydrogen storage alloys [J]. J. Mater. Sci. Technol., 2020, 51(0): 84-93. |
[13] | Jing Zhong, Lijun Zhang, Xiaoke Wu, Li Chen, Chunming Deng. A novel computational framework for establishment of atomic mobility database directly from composition profiles and its uncertainty quantification [J]. J. Mater. Sci. Technol., 2020, 48(0): 163-174. |
[14] | Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44(0): 171-190. |
[15] | Gang Lu, Shuai Nie, Jianjun Wang, Ying Zhang, Tianhai Wu, Yujie Liu, Chunming Liu. Enhancing the bake-hardening responses of a pre-aged Al-Mg-Si alloy by trace Sn additions [J]. J. Mater. Sci. Technol., 2020, 40(0): 107-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||