J. Mater. Sci. Technol. ›› 2022, Vol. 128: 59-70.DOI: 10.1016/j.jmst.2022.04.017
• Research Article • Previous Articles Next Articles
Zhang Jingjinga, Qi Xiaosia,b,*(), Gong Xiua, Peng Qionga, Chen Yanlia, Xie Rena, Zhong Weib,*(
)
Received:
2022-04-05
Revised:
2022-04-19
Accepted:
2022-04-24
Published:
2022-11-20
Online:
2022-11-22
Contact:
Qi Xiaosi,Zhong Wei
About author:
wzhong@nju.edu.cn (W. Zhong).Zhang Jingjing, Qi Xiaosi, Gong Xiu, Peng Qiong, Chen Yanli, Xie Ren, Zhong Wei. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption[J]. J. Mater. Sci. Technol., 2022, 128: 59-70.
Fig. 1. Schematic diagram for the production of (a) CoFe2O4 and NiFe2O4 precursors, and (b) core@shell structured CoSe2/FeSe2@MoSe2 and NiSe2/FeSe2@MoSe2flower-like MCNCs.
Experiment | Category of precursor | Amount of Mo source (mmol) | Amount of Se source (mmol) | Name of samples |
---|---|---|---|---|
i | CoFe2O4 | 1.5 | 3.0 | C1 |
3.0 | 6.0 | C2 | ||
4.5 | 9.0 | C3 | ||
ii | NiFe2O4 | 1.5 | 3.0 | N1 |
3.0 | 6.0 | N2 | ||
4.5 | 9.0 | N3 | ||
iii | - | 4.5 | 9.0 | Bare MoSe2 |
Table 1. Summarized sheets of designed experimental parameters and prepared samples.
Experiment | Category of precursor | Amount of Mo source (mmol) | Amount of Se source (mmol) | Name of samples |
---|---|---|---|---|
i | CoFe2O4 | 1.5 | 3.0 | C1 |
3.0 | 6.0 | C2 | ||
4.5 | 9.0 | C3 | ||
ii | NiFe2O4 | 1.5 | 3.0 | N1 |
3.0 | 6.0 | N2 | ||
4.5 | 9.0 | N3 | ||
iii | - | 4.5 | 9.0 | Bare MoSe2 |
Materials | RLmin (dB) | Thickness (mm) | EAB (GHz) | Thickness (mm) | Refs. |
---|---|---|---|---|---|
MoSe2 | -57.20 | 2.70 | 4.00 | 2.70 | [19] |
CoS2@MoS2/rGO | -58.00 | 2.40 | 6.24 | 2.40 | [43] |
MoS2/CNF | -54.55 | 3.80 | 5.84 | 2.50 | [44] |
CoS2@rGO | -56.90 | 2.20 | 4.10 | 2.20 | [45] |
WS2/NiO | -53.30 | 4.30 | 4.88 | 2.20 | [46] |
CoS2/Cu2S | -51.68 | 4.50 | 3.84 | 2.00 | [47] |
CuFe2O4/MoS2 | -49.43 | 2.70 | 8.16 | 2.30 | [48] |
MgFe2O4/MgO/C@MoS2 | -56.94 | 3.50 | 3.90 | 2.70 | [49] |
ZnFe2O4@C@MoS2/FeS2 | -52.50 | 2.50 | 4.98 | 2.23 | [50] |
Fe3O4/Fe@C@MoS2 | -53.79 | 2.24 | 4.40 | 2.24 | [51] |
NiS/Ni3S4@PPy@MoS2 | -51.29 | 2.29 | 3.24 | 2.29 | [52] |
ZnFe2O4@MoS2 | -61.80 | 3.00 | 5.80 | 2.00 | [53] |
MoS2@PPy@Fe3O4 | -32.00 | 2.00 | 4.30 | 2.00 | [54] |
CoSe2/FeSe2@MoSe2 | -62.08 | 1.97 | 4.60 | 1.72 | This work |
NiSe2/FeSe2@MoSe2 | -50.82 | 2.01 | 4.60 | 1.77 | This work |
Table 2. Contrastive table of MAPs between the representative MCNCs reported elsewhere and our designed MCNCs.
Materials | RLmin (dB) | Thickness (mm) | EAB (GHz) | Thickness (mm) | Refs. |
---|---|---|---|---|---|
MoSe2 | -57.20 | 2.70 | 4.00 | 2.70 | [19] |
CoS2@MoS2/rGO | -58.00 | 2.40 | 6.24 | 2.40 | [43] |
MoS2/CNF | -54.55 | 3.80 | 5.84 | 2.50 | [44] |
CoS2@rGO | -56.90 | 2.20 | 4.10 | 2.20 | [45] |
WS2/NiO | -53.30 | 4.30 | 4.88 | 2.20 | [46] |
CoS2/Cu2S | -51.68 | 4.50 | 3.84 | 2.00 | [47] |
CuFe2O4/MoS2 | -49.43 | 2.70 | 8.16 | 2.30 | [48] |
MgFe2O4/MgO/C@MoS2 | -56.94 | 3.50 | 3.90 | 2.70 | [49] |
ZnFe2O4@C@MoS2/FeS2 | -52.50 | 2.50 | 4.98 | 2.23 | [50] |
Fe3O4/Fe@C@MoS2 | -53.79 | 2.24 | 4.40 | 2.24 | [51] |
NiS/Ni3S4@PPy@MoS2 | -51.29 | 2.29 | 3.24 | 2.29 | [52] |
ZnFe2O4@MoS2 | -61.80 | 3.00 | 5.80 | 2.00 | [53] |
MoS2@PPy@Fe3O4 | -32.00 | 2.00 | 4.30 | 2.00 | [54] |
CoSe2/FeSe2@MoSe2 | -62.08 | 1.97 | 4.60 | 1.72 | This work |
NiSe2/FeSe2@MoSe2 | -50.82 | 2.01 | 4.60 | 1.77 | This work |
Fig. 9. (a, b) TEM images of N2; (c, d) TEM images of N3; (e) high-angle annular dark-field scanning TEM; element mapping images of (f) Mo, (g) Se, (h) Fe, and (i) Ni for N3.
Fig. 10. (a-c) Two-dimensional color RL maps; (d-f) RL and dm values; (g-i) EAB and dm for the as-prepared N1, N2, and N3 in the frequency range of S, C, X, and Ku-bands, respectively.
[1] | X.J. Zeng, X.Y. Cheng, R.H. Yu, G.D. Stucky,Carbon 168 (2020) 606-623 N Y. |
[2] | Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem. Int. Ed. 61 (2022) e202200705. |
[3] |
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Adv. Funct. Mater. 29 (2019) 1807398.
DOI URL |
[4] |
C.H. Sun, R.J. Z, S. Xu, D.Q. Hu, C.H. Zhang, G.L. Wu, J. Mater. Sci. Technol. 113 (2022) 128-137.
DOI URL |
[5] |
X.X. Sun, Y.B. Li, Y.X. Huang, Y.J. Cheng, S.S. Wang, W.L. Yin, Adv. Funct. Mater. 32 (2021) 2107508.
DOI URL |
[6] | Z.C. Wu, H.W. Cheng, C. Jin, B.T. Yang, C.Y. Xu, K. Pei, H.B. Zhang, Z.Q. Yang, R. C. Che, Adv. Mater 34 (2022) 2107538. |
[7] |
H.Y. Wang, X.B. Sun, S.H. Yang, P.Y. Zhao, X.J. Zhang, G.S. Wang, Y. Huang, Nano Micro Lett. 13 (2021) 206.
DOI URL |
[8] | H.H. Zhao, X.Z. Xu, Y.H. Wang, D.G. Fan, D.W. Liu, K.F. Lin, P. Xu, X.J. Han, Y. C. Du, Small 16 (2020) 2003407. |
[9] | Z.G. Gao, Z.H. Ma, D. Lan, Z.H. Zhao, L.M. Zhang, H.J. Wu, Y.L. Hou, Adv. Funct. Mater. (2022) 2112294. |
[10] |
Y.L. Zhang, Y. Yan, H. Qiu, Z.L. Ma, K.P. Ruan, J.W. Gu, J. Mater. Sci. Technol. 103 (2022) 42-49.
DOI |
[11] |
Y.F. Wang, D.L. Chen, X. Yin, P. Xu, F. Wu, M. He, ACS Appl. Mater. Interfaces 7 (2015) 26226-26234.
DOI URL |
[12] |
M.Q. Ning, Z.K. Lei, G.G. Tan, Q.K. Man, J.B. Li, R.W. Li, ACS Appl. Mater. Inter- faces 13 (2021) 47061-47071.
DOI URL |
[13] |
J.Q. Wang, L. Liu, S.L. Jiao, K.J. Ma, J. Lv, J.J. Yang, Adv. Funct. Mater. 30 (2020) 2002595.
DOI URL |
[14] |
L.L. Liu, S. Zhang, F. Yan, C.Y. Li, C.L. Zhu, X.T. Zhang, Y.J. Chen, ACS Appl. Mater. Interfaces 10 (2018) 14108-14115.
DOI URL |
[15] | D.Q. Zhang, T.T. Liu, J.Y. Cheng, Q. Cao, G.P. Zheng, S. Liang, H. Wang, M.S. Cao, Nano Micro Lett. 11 (2019) 38. |
[16] |
L.L. Liang, W.H. Gu, Y. Wu, B.S. Zhang, G.H. Wang, Y. Yang, G.B. Ji, Adv. Mater. 34 (2022) 2106195.
DOI URL |
[17] |
Z.J. Xu, M. He, Y.M. Zhou, S.X. Nie, Y.J. Wang, Y. Huo, Y.F. Kang, R.L. Wang, R. Xu, H. Peng, X. Chen, Nano Res. 14 (2021) 738-746.
DOI URL |
[18] |
M.Q. Huang, L. Wang, Q. Liu, W.B. You, R.C. Che, Chem. Eng. J. 429 (2022) 132191.
DOI URL |
[19] |
Y. Cheng, Y. Zhao, H.Q. Zhao, H.L. Lv, X.D. Qi, J.M. Cao, G.B. Ji, Y.W. Du, Chem. Eng. J. 372 (2019) 390-398.
DOI |
[20] |
Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
[21] | J.J. Zhang, Z.H. Li, X.S. Qi, X. Gong, R. Xie, C.Y. Deng, W. Zhong, Y.W. Du, Com- pos. Part B Eng. 222 (2021) 109067. |
[22] |
F. Mederos-Henry, S. Depaifve, A. Wolf, Y. Danlée, A. Delcorte, C. Bailly, I. Huy- nen, S. Hermans, Compos. Sci. Technol. 187 (2020) 107947.
DOI URL |
[23] |
P.J. Bora, I. Azeem, K.J. Vinoy, P.C. Ramamurthy, G. Madras, Compos. Part B Eng. 132 (2018) 188-196.
DOI URL |
[24] |
H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han, Y.N. Du, Nano Micro Lett. 13 (2021) 208.
DOI URL |
[25] |
R. Peymanfar, F. Fazlalizadeh, Chem. Eng. J. 402 (2020) 126089.
DOI URL |
[26] | H.L. Lv, X.D. Zhou, G.L. Wu, U.I. Kara, X.G. Wang, J. Mater. Chem. A 9 (2021) 19710-19718. |
[27] |
X. Li, X. Qu, Z. Xu, W. Dong, F. Wang, W. Guo, H. Wang, Y. Du, ACS Appl. Mater. Interface 11 (2019) 19267-19276.
DOI URL |
[28] | X.H. Huan, H.T. Wang, W.C. Deng, J.Q. Yan, K. Xu, H.B. Geng, X.D. Guo, X.L. Jia, J.S. Zhou, X.P. Yang, Small 18 (2022) 2105411. |
[29] | X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Adv. Mater. 32 (2020) 2002112. |
[30] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
[31] |
N. Sun, W. Li, S. Wei, H. Gao, W. Wang, S.G. Chen, J. Mater. Sci. Technol. 91 (2021) 187-199.
DOI URL |
[32] |
L. Liu, N. He, T. Wu, P.B. Hu, G.X. Tong, Chem. Eng. J. 355 (2019) 103-108.
DOI URL |
[33] | Y.P. Zhao, X.Q. Zuo, Y. Guo, H. Huang, H. Zhang, T. Wang, N.X. Wen, H. Chen, T.Z. Cong, J. Muhammad, X. Yang, X.N. Wang, Z. Fan, L.J. Pan, Nano Lett. 13 (2021) 144. |
[34] |
L. Long, E.Q. Yang, X.S. Qi, R. Xie, Z.C. Bai, S.J. Qin, C.Y. Deng, W. Zhong, ACS Sustain. Chem. Eng. 8 (2020) 613-623.
DOI URL |
[35] |
S. Bandaru, N. Murthy, R. Kulkarni, N.J. English, J. Mater. Sci. Technol. 86 (2021) 127-138.
DOI URL |
[36] |
M. Zhu, Q. Yan, X.J. Bai, H. Cai, J. Zhao, Y.D. Yan, K. Zhu, K. Ye, J. Yan, D.X. Cao, J. Colloid Interface Sci. 608 (2022) 922-930.
DOI URL |
[37] | Z. Kong, L. Wang, S. Iqbal, B. Zhang, B. Wang, J.M. Dou, F.B. Wang, Y.T. Qian, M. Zhang, L.Q. Xu, Small (2022) 2107252. |
[38] |
Y.S. Xu, Y.M. Fo, H.H. Lv, X.J. Cui, G.B. Liu, X. Zhou, L.H. Jiang, ACS Appl. Mater. Interfaces 14 (2022) 10246-10256.
DOI URL |
[39] | Y.W. Zhang, Y.K. Wu, W. Zhong, F.Y. Xiao, M.K. Aslam, X. Zhang, M.W. Xu, ChemSusChem 14 (2021) 1336-1343. |
[40] | H.H. Zhao, X.Z. Xu, D.G. Fan, F. Y.W.P. Xu, L.R. Cui, X.J. Han, Y.N. Du, J. Mater. Chem. A 9 (2021) 22489-22500. |
[41] | B. Zhao, Y. Li, H.Y. Ji, P.W. Bai, S. Wang, B.B. Fan, X.Q. Guo, R. Zhang,Carbon 176 (2021) 411-420 N Y. |
[42] |
B.L. Wang, Q. Wu, Y.G. Fu, T. Liu, J. Mater. Sci. Technol. 86 (2021) 91-109.
DOI URL |
[43] |
T. Zhu, W. Shen, X.Y. Wang, Y.F. Song, W. Wang, Chem. Eng. J. 378 (2019) 122159.
DOI URL |
[44] | H.R. Geng, X. Zhang, W.H. Xie, P.F. Zhao, G.Z. Wang, J.H. Liao, L.J. Dong, J. Col- loid Interface Sci. 609 (2022) 33-42. |
[45] |
C. Zhang, B.C. Wang, J.Y. Xiang, C. Su, C.P. Mu, F.S. Wen, Z.Y. Liu, ACS Appl. Mater. Interfaces 9 (2017) 28868-28875.
DOI URL |
[46] |
D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, J.X. Chai, T.T. Liu, X.W. Ba, S. Ullah, G.P. Zheng, M. Yan, M.S. Cao, Sci. Bull. 65 (2020) 138-146.
DOI URL |
[47] | Y.Y. Li, L.X. Gai, G.L. Song, Q.D. An, Z.Y. Xiao, S.R. Zhai,Carbon 186 (2021) 238-252 N Y. |
[48] |
J.K. Liu, Z.R. Jia, W.H. Zhou, X.H. Liu, C.H. Zhang, B.H. Xu, G.L. Wu, Chem. Eng. J. 429 (2021) 132253.
DOI URL |
[49] |
Z.J. Liao, M.L. Ma, Y.X. Bi, Z.Y. Tong, K.L. Chung, Z.J. Li, Y. Ma, B.L. Gao, Z.K. Cao, R.R. Sun, J. Colloid Interfaces Sci. 606 (2021) 709-718.
DOI URL |
[50] |
Z.J. Liao, M.L. Ma, Z.Y. Tong, Y.X. Bi, K.L. Chung, M.T. Qiao, Y. Ma, A.J. Ma, G. L. Wu, Z.X. Li, J. Colloid Interface Sci. 600 (2021) 90-98.
DOI URL |
[51] | Z.Y. Tong, Z.J. Liao, Y.Y. Liu, M.L. Ma, Y.X. Bi, W.B. Huang, Y. Ma, M.T. Qiao, G. L. Wu,Carbon 179 (2021) 646-654 N Y. |
[52] |
W.B. Huang, Z.Y. Tong, Y.X. Bi, M.L. Ma, Z.J. Liao, G.L. Wu, Y. Ma, S.Y. Guo, X. Y. Jiang, X.P. Liu, J. Colloid Interface Sci. 599 (2021) 262-270.
DOI URL |
[53] |
Y. Wang, X.C. Di, Y.Q. Fu, X.M. Wu, J.T. Cao, J. Colloid Interface Sci. 587 (2021) 561-573.
DOI URL |
[54] |
X.L. Chen, T. Shi, G.L. Wu, Y. Lu, J. Colloid Interface Sci. 572 (2020) 227-235.
DOI URL |
[55] |
J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng, J.C. Fan, L.X. Chen, J.W. Gu, Compos. Commun. 22 (2020) 100486.
DOI URL |
[56] | J.W. Wang, J. Z.R, X.H. Liu, J.L. Dou, B.H. Xu, B.B. Wang, G.L. Wu, Nano Micro Lett. 13 (2021) 175. |
[57] |
S. Lu, L. Xia, J. Xu, C. Ding, T. Li, H. Yang, B. Zhong, T. Zhang, L. Huang, L. Xiong, X. Huang, G. Wen, ACS Appl. Mater. Interfaces 11 (2019) 18626-18636.
DOI URL |
[58] | L. Lei, Z.J. Yao, J.T. Zhou, W.J. Zheng, B. Wei, J.Q. Zu, K.Y. Yan,Carbon 173 (2021) 69-79 N Y. |
[59] |
C.X. Wang, Z.R. Jia, S.Q. He, J.X. Zhou, S. Zhang, M.L. Tian, B.B. Wang, G.L. Wu, J. Mater. Sci. Technol. 108 (2022) 236-243.
DOI URL |
[60] |
C. Li, Z.H. Li, X.S. Qi, X. Gong, Y.L. Chen, Q. Peng, C.Y. Deng, T. Jing, W. Zhong, J. Colloid Interfaces Sci. 605 (2022) 13-22.
DOI URL |
[61] |
X.F. Xu, S.H. Shi, Y.L. Tang, G.Z. Wang, M.F. Zhou, G.Q. Zhao, X.C. Zhou, S.W. Lin, F.B. Meng, Adv. Sci. 8 (2021) 2002658.
DOI URL |
[62] |
Y.L. Zhang, J.W. Gu, Nano Micro Lett. 14 (2022) 89.
DOI URL |
[1] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
[2] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[3] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[4] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
[5] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
[6] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
[7] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
[8] | Jin-Bo Cheng, Hai-Bo Zhao, Ai-Ning Zhang, Yan-Qin Wang, Yu-Zhong Wang. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 126(0): 266-274. |
[9] | Zirui Jia, Mingyue Kong, Bowen Yu, Yingzhuo Ma, Jiaying Pan, Guanglei Wu. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 127(0): 153-163. |
[10] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[11] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[12] | Guohao Dai, Ruixiang Deng, Xiao You, Tao Zhang, Yun Yu, Lixin Song. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases [J]. J. Mater. Sci. Technol., 2022, 116(0): 11-21. |
[13] | Fei Wu, Lingyun Wan, Ting Wang, Muhammad Rizwan Tariq, Tariq Shah, Pei Liu, Qiuyu Zhang, Baoliang Zhang. Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 117(0): 36-48. |
[14] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[15] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||