J. Mater. Sci. Technol. ›› 2022, Vol. 128: 118-132.DOI: 10.1016/j.jmst.2022.04.012
• Research Article • Previous Articles Next Articles
Wang Qingfua,d,1, Zhang Mingxingb,c,1, Yang Chuntianb,c, Yang Yib,c, Zhou Enzeb,c, Liu Panb,c, Jin Daiqianga, Xu Dakeb,c,*(), Wu Lina,*(
), Wang Fuhuib,c
Received:
2022-01-29
Revised:
2022-03-23
Accepted:
2022-04-06
Published:
2022-11-20
Online:
2022-11-22
Contact:
Xu Dake,Wu Lin
About author:
lwu@cmu.edu.cn (L. Wu).Wang Qingfu, Zhang Mingxing, Yang Chuntian, Yang Yi, Zhou Enze, Liu Pan, Jin Daiqiang, Xu Dake, Wu Lin, Wang Fuhui. Oral microbiota accelerates corrosion of 316L stainless steel for orthodontic applications[J]. J. Mater. Sci. Technol., 2022, 128: 118-132.
Fig. 1. SEM images of 316L SS coupon surfaces immersed in abiotic medium for 3 days (A) and 7 days (F), with oral microbiota from subject 1 for 3 days (B) and 7 days (G), subject 2 for 3 days (C) and 7 days (H). Live/dead cell staining images of 316L SS coupon surfaces inoculated with oral microbiota from subject 1 for 3 days (D) and 7 days (I), subject 2 for 3 days (E) and 7 days (J).
Fig. 2. (A) Average biofilm thickness on the 316L SS coupon surfaces formed by oral microbiota from subject 1 and subject 2. (B) Variations of pH measured during the incubation in the presence and absence of microbiota from subject 1 and subject 2. (*: p<0.05 compared with day 3).
Fig. 3. (A-C) Pitting corrosion caused by the abiotic medium (A), medium with oral microbiota from subject 1 (B) and subject 2 (C). (D) Depths and cross-sectional diameters of the seven largest corrosion pits in the presence and absence of oral microbiota.
Fig. 4. EOCP values (A) and Rp values (B) of 316L SS coupons immersed in the abiotic medium and inoculation with oral microbiota from subject 1 and subject 2.
Fig. 5. (A-C) Nyquist and (D-F) Bode plots of the 316L SS coupons in abiotic medium (A, D), medium with microbiota from subject 1 (B, E) and subject 2 (C, F).
Medium | Incubation time (day) | Rs (Ω cm2) | Qdl Y (μF cm−2 sn) (×10−5) | ndl | Rb (Ω cm2) | Qb Y (μF cm−2 sn)(×10−5) | nb | Rct (kΩ cm2) | Cw (s)(×10−4) | ∑χ2(×10−3) |
---|---|---|---|---|---|---|---|---|---|---|
Abiotic | 0 | 16.7 ± 0.4 | 9.8 ± 0.7 | 0.9 ± 0.0 | - | - | - | 255.9 ± 70.1- | - | 1.2 ± 0.3 |
1 | 17.8 ± 0.5 | 9.6 ± 0.5 | 0.9 ± 0.0 | - | - | - | 1178.9 ± 490.1 | - | 2.2 ± 1.1 | |
3 | 15.9 ± 0.3 | 250.1 ± 212.0 | 0.6 ± 0.1 | 28.6 ± 38.3 | 8.6 ± 0.5 | 0.9 ± 0.0 | 1270.3 ± 181.9 | - | 0.1 ± 0.1 | |
5 | 14.4 ± 1.3 | 344.4 ± 45.9 | 0.5 ± 0.0 | 177.5 ± 244.9 | 7.4 ± 0.9 | 0.9 ± 0.0 | 3873.3 ± 1237.8 | - | 0.0 ± 0.0 | |
7 | 14.5 ± 0.3 | 555.7 ± 518.2 | 0.5 ± 0.2 | 167.0 ± 260.9 | 8.8 ± 0.8 | 0.9 ± 0.0 | 1960.0 ± 1010.5 | - | 0.1 ± 0.1 | |
Subject 1 | 0 | 18.1 ± 0.4 | 9.5 ± 0.5 | 0.9 ± 0.00 | - | - | - | 189.0 ± 132.3 | - | 1.5 ± 0.8 |
1 | 15.0 ± 1.1 | 9.1 ± 0.4 | 0.9 ± 0.0 | - | - | - | 301.7 ± 53.7 | - | 2.1 ± 0.5 | |
3 | 13.9 ± 3.3 | 8.7 ± 0.6 | 0.8 ± 0.0 | - | - | - | 160.7 ± 107.1 | - | 4.6 ± 1.6 | |
5 | 12.4 ± 0.9 | 8.2 ± 0.5 | 0.8 ± 0.0 | - | - | - | 660.8 ± 255.0 | - | 5.3 ± 3.0 | |
7 | 11.7 ± 0.7 | 7.9 ± 0.5 | 0.8 ± 0.0 | - | - | - | 547.3 ± 152.8 | - | 5.9 ± 3.1 | |
Subject 2 | 0 | 17.4 ± 0.9 | 10.3 ± 0.5 | 0.9 ± 0.0 | - | - | - | 277.5 ± 218.6 | - | 1.4 ± 0.3 |
1 | 16.1 ± 2.1 | 8.8 ± 0.4 | 0.9 ± 0.0 | - | - | - | 7.2 ± 1.7 | 4.9 ± 1.4 | 3.3 ± 0.4 | |
3 | 14.8 ± 0.9 | 8.1 ± 0.1 | 0.8 ± 0.0 | - | - | - | 13.4 ± 13.6 | 3.7 ± 2.0 | 6.1 ± 1.1 | |
5 | 14.2 ± 1.0 | 8.3 ± 0.2 | 0.8 ± 0.0 | - | - | - | 21.9 ± 20.5 | 1.9 ± 0.1 | 7.8 ± 0.2 | |
7 | 12.9 ± 3.2 | 8.2 ± 0.5 | 0.8 ± 0.1 | - | - | 51.6 ± 8.2 | 1.3 ± 0.4 | 7.7 ± 2.5 |
Table 1. EIS parameters extracted from EIS measurements during the 7 days of incubationa.
Medium | Incubation time (day) | Rs (Ω cm2) | Qdl Y (μF cm−2 sn) (×10−5) | ndl | Rb (Ω cm2) | Qb Y (μF cm−2 sn)(×10−5) | nb | Rct (kΩ cm2) | Cw (s)(×10−4) | ∑χ2(×10−3) |
---|---|---|---|---|---|---|---|---|---|---|
Abiotic | 0 | 16.7 ± 0.4 | 9.8 ± 0.7 | 0.9 ± 0.0 | - | - | - | 255.9 ± 70.1- | - | 1.2 ± 0.3 |
1 | 17.8 ± 0.5 | 9.6 ± 0.5 | 0.9 ± 0.0 | - | - | - | 1178.9 ± 490.1 | - | 2.2 ± 1.1 | |
3 | 15.9 ± 0.3 | 250.1 ± 212.0 | 0.6 ± 0.1 | 28.6 ± 38.3 | 8.6 ± 0.5 | 0.9 ± 0.0 | 1270.3 ± 181.9 | - | 0.1 ± 0.1 | |
5 | 14.4 ± 1.3 | 344.4 ± 45.9 | 0.5 ± 0.0 | 177.5 ± 244.9 | 7.4 ± 0.9 | 0.9 ± 0.0 | 3873.3 ± 1237.8 | - | 0.0 ± 0.0 | |
7 | 14.5 ± 0.3 | 555.7 ± 518.2 | 0.5 ± 0.2 | 167.0 ± 260.9 | 8.8 ± 0.8 | 0.9 ± 0.0 | 1960.0 ± 1010.5 | - | 0.1 ± 0.1 | |
Subject 1 | 0 | 18.1 ± 0.4 | 9.5 ± 0.5 | 0.9 ± 0.00 | - | - | - | 189.0 ± 132.3 | - | 1.5 ± 0.8 |
1 | 15.0 ± 1.1 | 9.1 ± 0.4 | 0.9 ± 0.0 | - | - | - | 301.7 ± 53.7 | - | 2.1 ± 0.5 | |
3 | 13.9 ± 3.3 | 8.7 ± 0.6 | 0.8 ± 0.0 | - | - | - | 160.7 ± 107.1 | - | 4.6 ± 1.6 | |
5 | 12.4 ± 0.9 | 8.2 ± 0.5 | 0.8 ± 0.0 | - | - | - | 660.8 ± 255.0 | - | 5.3 ± 3.0 | |
7 | 11.7 ± 0.7 | 7.9 ± 0.5 | 0.8 ± 0.0 | - | - | - | 547.3 ± 152.8 | - | 5.9 ± 3.1 | |
Subject 2 | 0 | 17.4 ± 0.9 | 10.3 ± 0.5 | 0.9 ± 0.0 | - | - | - | 277.5 ± 218.6 | - | 1.4 ± 0.3 |
1 | 16.1 ± 2.1 | 8.8 ± 0.4 | 0.9 ± 0.0 | - | - | - | 7.2 ± 1.7 | 4.9 ± 1.4 | 3.3 ± 0.4 | |
3 | 14.8 ± 0.9 | 8.1 ± 0.1 | 0.8 ± 0.0 | - | - | - | 13.4 ± 13.6 | 3.7 ± 2.0 | 6.1 ± 1.1 | |
5 | 14.2 ± 1.0 | 8.3 ± 0.2 | 0.8 ± 0.0 | - | - | - | 21.9 ± 20.5 | 1.9 ± 0.1 | 7.8 ± 0.2 | |
7 | 12.9 ± 3.2 | 8.2 ± 0.5 | 0.8 ± 0.1 | - | - | 51.6 ± 8.2 | 1.3 ± 0.4 | 7.7 ± 2.5 |
Fig. 6. (A) Potentiodynamic polarization curves of 316L SS coupons after exposure to different media for 7 days. (B) Time-dependent changes of Rct during the 7-day incubation in different culture media. (C) Electrochemical parameters extracted from the potentiodynamic polarization curves. (*: p<0.05 compared with the abiotic groups).
Fig. 7. Detailed XPS spectra of Fe, Cr and Ni coupons after incubation for 7 days in abiotic medium (A-C), medium inoculated with microbiota from subject 1 (D-F) and subject 2 (G-I). (The subscripts hy and ox represent hydroxides and oxides, respectively).
Fig. 8. (A) Concentrations of metallic ions released from the 316L SS coupons after immersion in the different media and (B) number of genera detected in the microbiota from subject 1 and subject 2 at different time. (*: p<0.05 compared with the abiotic groups).
Fig. 11. (A) Time dependent Rp variation obtained from the LPR tests in the abiotic and microbiota inoculated media with and without the addition of riboflavin. (B) Time dependent Rct variation obtained from the fitted EIS data in the abiotic and microbiota inoculated media with and without the addition of riboflavin.
[1] | P. Zhang, D. Xu, Y. Li, K. Yang, T. Gu, Bioelectrochemistry 101 (2015) 14-21. |
[2] |
Y. Ma, Y. Zhang, R. Zhang, F. Guan, B. Hou, J. Duan, Appl. Microbiol. Biotechnol. 104 (2020) 515-525.
DOI URL |
[3] | M.A. Javed, W.C. Neil, P.R. Stoddart, S.A. Wade, Biofouling 32 (2016) 109-122. |
[4] |
H.A. Videla, Int. Biodeterior. Biodegrad. 48 (2001) 176-201.
DOI URL |
[5] |
R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeterior. Biodegrad. 137 (2019) 42-58.
DOI URL |
[6] |
Y. Dong, Y. Lekbach, Z. Li, D. Xu, S. El Abed, S. Ibnsouda Koraichi, F. Wang, J. Mater. Sci. Technol. 37 (2020) 200-206.
DOI URL |
[7] |
J.A. Aas, B.J. Paster, L.N. Stokes, I. Olsen, F.E. Dewhirst, J. Clin. Microbiol. 43 (2005) 5721-5732.
DOI URL |
[8] | B.J. Paster, I. Olsen, J.A. Aas, F.E. Dewhirst, Periodontol 42 (2006) 80-87 2000. |
[9] |
E. Zaura, B.J. Keijser, S.M. Huse, W. Crielaard, BMC Microbiol. 9 (2009) 259.
DOI URL |
[10] |
J. Kreth, J. Merritt, F. Qi, DNA Cell Biol. 28 (2009) 397-403.
DOI PMID |
[11] | E.D. de Avila, B.P. Lima, T. Sekiya, Y. Torii, T. Ogawa, W. Shi, R. Lux, Biomaterials 67 (2015) 84-92. |
[12] | J.C. Souza, M. Henriques, R. Oliveira, W. Teughels, J.P. Celis, L.A. Rocha, Biofoul- ing 26 (2010) 471-478. |
[13] |
C.L. Sikora, M.F. Alfaro, J.C. Yuan, V.A. Barao, C. Sukotjo, M.T. Mathew, J. Prosthodont. 27 (2018) 842-852.
DOI PMID |
[14] |
T. Kameda, H. Oda, K. Ohkuma, N. Sano, N. Batbayar, Y. Terashima, S. Sato, K. Terada, Dent. Mater. J. 33 (2014) 187-195.
DOI URL |
[15] |
D.A. Siddiqui, L. Guida, S. Sridhar, P. Valderrama, T.G. Wilson Jr. D. C. Rodrigues, J. Periodontol. 90 (2019) 72-81.
DOI PMID |
[16] | A. Mombelli, D. Hashim, N. Cionca, Clin. Oral Implants Res. 29 (2018) 37-53. |
[17] |
J. Mystkowska, J.A. Ferreira, K. Leszczy ´nska, S. Chmielewska, J.R. D ˛abrowski, P. Wieci ´nski, K.J. Kurzydłowski, J. Biomed. Mater. Res. Part B 105 (2017) 222-229.
DOI URL |
[18] |
S. Sridhar, Z. Abidi, T.G. Wilson Jr. P. Valderrama, C. Wadhwani, K. Palmer, D. C. Rodrigues, J. Oral Implantol. 42 (2016) 248-257.
DOI URL |
[19] | S. Sridhar, F. Wang, T.G. Wilson Jr. P. Valderrama, K. Palmer, D.C. Rodrigues, Dent. Mater. 34 (2018) e265-e279. |
[20] |
J. Mystkowska, Acta Bioeng. Biomech. 18 (2016) 87-96.
PMID |
[21] |
T. Gu, R. Jia, T. Unsal, D. Xu, J. Mater. Sci. Technol. 35 (2019) 631-636.
DOI URL |
[22] |
Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, J. Mater. Sci. Technol. 34 (2018) 1713-1718.
DOI URL |
[23] | R. Jia, D. Yang, D. Xu, T. Gu, Bioelectrochemistry 118 (2017) 38-46. |
[24] |
M. Mehanna, R. Basseguy, M.-. L. Delia, A. Bergel, Electrochem. Commun. 11 (2009) 568-571.
DOI URL |
[25] |
B.W.A. Sherar, I.M. Power, P.G. Keech, S. Mitlin, G. Southam, D.W. Shoesmith, Corros. Sci. 53 (2011) 955-960.
DOI URL |
[26] |
D. Liu, H. Yang, J. Li, J. Li, Y. Dong, C. Yang, Y. Jin, L. Yassir, Z. Li, D. Hernandez, D. Xu, F. Wang, J.A. Smith, J. Mater. Sci. Technol. 79 (2021) 101-108.
DOI URL |
[27] | K.T. Oh, Y.S. Kim, Y.S. Park, K.N. Kim, J. Biomed. Mater. Res. Part B 69 (2004) 183-194. |
[28] |
K. Prem Ananth, A. Joseph Nathanael, S.P. Jose, T.H. Oh, D. Mangalaraj, Mater. Sci. Eng. C 59 (2016) 1110-1124.
DOI URL |
[29] |
Y. Jin, Z. Li, E. Zhou, Y. Lekbach, D. Xu, S. Jiang, F. Wang, Electrochim. Acta 316 (2019) 93-104.
DOI URL |
[30] |
J.D. Rudney, R. Chen, P. Lenton, J. Li, Y. Li, R.S. Jones, C. Reilly, A.S. Fok, C. Apari- cio, J. Appl. Microbiol. 113 (2012) 1540-1553.
DOI PMID |
[31] |
I.M. Velsko, L.M. Shaddox, BMC Microbiol. 18 (2018) 70.
DOI PMID |
[32] |
J.O. Kistler, M. Pesaro, W.G. Wade, BMC Microbiol. 15 (2015) 24.
DOI PMID |
[33] | A.P. Colombo, S. Bennet, S.L. Cotton, J.M. Goodson, R. Kent, A.D. Haffajee, S.S. Socransky, H. Hasturk, T.E. Van Dyke, F.E. Dewhirst, B.J. Paster, J. Periodon- tol. 83 (2012) 1279-1287. |
[34] | J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Pena, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Wal- ters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, Nat. Methods 7 (2010) 335-336. |
[35] | C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F.O. Glockner, Nucl. Acids Res. 41 (2013) D590-D596. |
[36] |
H. Liu, T. Gu, G. Zhang, Y. Cheng, H. Wang, H. Liu, Corros. Sci. 102 (2016) 93-102.
DOI URL |
[37] |
J.J. Doel, N. Benjamin, M.P. Hector, M. Rogers, R.P. Allaker, Eur. J. Oral Sci. 113 (2005) 14-19.
DOI URL |
[38] | M.C. Burleigh, L. Liddle, C. Monaghan, D.J. Muggeridge, N. Sculthorpe, J.P. Butcher, F.L. Henriquez, J.D. Allen, C. Easton, Free Radic, Biol. Med. 120 (2018) 80-88. |
[39] | L. Liddle, M.C. Burleigh, C. Monaghan, D.J. Muggeridge, N. Sculthorpe, C.R. Ped- lar, J. Butcher, F.L. Henriquez, C. Easton, Nitric Oxide 83 (2019) 1-10. |
[40] |
R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Corros. Sci. 127 (2017) 1-9.
DOI URL |
[41] |
D. Xu, Y. Li, F. Song, T. Gu, Corros. Sci. 77 (2013) 385-390.
DOI URL |
[42] |
T. Thurnheer, G.N. Belibasakis, Clin. Oral Implants Res. 27 (2016) 890-895.
DOI URL |
[43] |
E. Giertsen, R.A. Arthur, B. Guggenheim, Caries Res. 45 (2011) 31-39.
DOI PMID |
[44] |
B. Guggenheim, M. Guggenheim, R. Gmür, E. Giertsen, T. Thurnheer, Caries Res. 38 (2004) 212-222.
PMID |
[45] |
B. Guggenheim, E. Giertsen, P. Schupbach, S. Shapiro, J. Dent. Res. 80 (2001) 363-370.
PMID |
[46] | D.J. Bradshaw, P.D. Marsh, C. Allison, K.M. Schilling, Microbiology 142 (1996) 623-629. |
[47] |
H. Qian, P. Ju, D. Zhang, L. Ma, Y. Hu, Z. Li, L. Huang, Y. Lou, C. Du, Front. Microbiol. 10 (2019) 844.
DOI URL |
[48] |
Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y.F. Cheng, X. Li, Corros. Sci. 150 (2019) 218-234.
DOI URL |
[49] | Q. Li, X. Lin, Q. Luo, Y.A. Chen, J. Wang, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater. 29 (2022) 32-48. |
[50] | Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang, J. Tan, Z. Dong, J. Dang, J. Li, Y. Chen, B. Jiang, S. Sun, F. Pan, J. Magnes. Alloy 9 (2021) 1922-1941. |
[51] | Q. Li, X. Peng, F. Pan, J. Magnes. Alloy 9 (2021) 2223-2224. |
[52] | Y. Lekbach, T. Liu, Y. Li, M. Moradi, W. Dou, D. Xu, J.A. Smith, D.R. Lovley, in: R.K. Poole, D.J. Kelly, in: Advances in Microbial Physiology, Academic Press, 2021, pp. 317-390. |
[53] |
E.L. McGinley, G.P. Moran, G.J. Fleming, J. Dent. 41 (2013) 1091-1100.
DOI PMID |
[54] | N.M. Dogan, C. Kantar, S. Gulcan, C.J. Dodge, B.C. Yilmaz, M.A. Mazmanci, Env- iron. Sci. Technol. 45 (2011) 2278-2285. |
[55] |
L.E. Wu, A. Levina, H.H. Harris, Z. Cai, B. Lai, S. Vogt, D.E. James, P.A. Lay, Angew. Chem. Int. Ed. 55 (2016) 1742-1745.
DOI URL |
[56] |
E.L. McGinley, A.H. Dowling, G.P. Moran, G.J. Fleming, J. Dent. Res. 92 (2013) 92-97.
DOI PMID |
[57] |
N. Takahashi, B. Nyvad, J. Dent. Res. 90 (2011) 294-303.
DOI PMID |
[58] | A. Mira, A. Simon-Soro, M.A. Curtis, J. Clin. Periodontol. 44 (2017) S23-S38. |
[59] | N.B. Pitts, D.T. Zero, P.D. Marsh, K. Ekstrand, J.A. Weintraub, F. Ramos-Gomez, J. Tagami, S. Twetman, G. Tsakos, A. Ismail, Nat. Rev. Dis. Primers 3 (2017) 17030. |
[60] | S. Sridhar, T.G. Wilson Jr. K. L. Palmer, P. Valderrama, M.T. Mathew, S. Prasad, M. Jacobs, I.M. Gindri, D.C. Rodrigues, Clin. Implant. Dent. Relat. Res. 17 (2015) e562-e575. |
[61] |
Y. Yang, M. Masoumeh, E. Zhou, D. Liu, Y. Song, D. Xu, F. Wang, J.A. Smith, Corros. Sci. 182 (2021) 109286.
DOI URL |
[62] |
W. Wang, Y. Du, S. Yang, X. Du, M. Li, B. Lin, J. Zhou, L. Lin, Y. Song, J. Li, X. Zuo, C. Yang, Anal. Chem. 91 (2019) 12138-12141.
DOI PMID |
[63] |
D. Naradasu, W. Miran, M. Sakamoto, A. Okamoto, Front. Microbiol. 9 (2018) 3267.
DOI PMID |
[64] | D. Naradasu, A. Guionet, T. Okinaga, T. Nishihara, A. Okamoto, ChemElec- troChem 7 (2020) 2012-2019. |
[65] |
L. Wang, F. Long, D. Liang, X. Xiao, H. Liu, Bioresour. Technol. 320 (2021) 124314.
DOI URL |
[66] | O. Vasieva, I. Goryanin, J. Integr. Bioinform. 16 (2019) 20190016. |
[67] | G. Pankratova, L. Hederstedt, L. Gorton, Anal. Chim. Acta 1076 (2019) 32-47. |
[68] | M. Qi, B. Liang, R. Chen, X. Sun, Z. Li, X. Ma, Y. Zhao, D. Kong, J. Wang, A. Wang, Chemosphere 202 (2018) 105-110. |
[69] |
Q. Sun, Z.L. Li, Y.Z. Wang, C.X. Yang, J.S. Chung, A.J. Wang, Bioresour. Technol. 208 (2016) 64-72.
DOI URL |
[70] | L. Schwab, L. Rago, C. Koch, F. Harnisch, Bioelectrochemistry 130 (2019) 107334. |
[71] |
G. Ren, Y. Yan, Y. Nie, A. Lu, X. Wu, Y. Li, C. Wang, H. Ding, Front. Microbiol. 10 (2019) 293.
DOI URL |
[72] |
H.Y. Tang, C. Yang, T. Ueki, C.C. Pittman, D. Xu, T.L. Woodard, D.E. Holmes, T. Gu, F. Wang, D.R. Lovley, ISME J. 15 (2021) 3084-3093.
DOI URL |
[1] | Qingjie Li, Dandan Qin, Yunzhuo Lu, Xuemei Zhu, Xing Lu. Laser additive manufacturing of ductile Fe-based bulk metallic glass composite [J]. J. Mater. Sci. Technol., 2022, 121(0): 148-153. |
[2] | Yingrui Liu, Linlin Liu, Shuyu Li, Rujia Wang, Peng Guo, Aiying Wang, Peiling Ke. Accelerated deterioration mechanism of 316L stainless steel in NaCl solution under the intermittent tribocorrosion process [J]. J. Mater. Sci. Technol., 2022, 121(0): 67-79. |
[3] | Mingkun Jiang, Ying Han, Xiangyi Chen, Guoqing Zu, Weiwei Zhu, Xu Ran. Cu-rich nanoprecipitates modified using Al to simultaneously enhance the strength and ductility of ferritic stainless steel [J]. J. Mater. Sci. Technol., 2022, 121(0): 93-98. |
[4] | Yanxin Qiao, Xinyi Wang, Lanlan Yang, Xiaojing Wang, Jian Chen, Zhengbin Wang, Huiling Zhou, Jiasheng Zou, Fuhui Wang. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107(0): 197-206. |
[5] | Junlei Wang, Hongfang Liu, Magdy El-Said Mohamed, Mazen A.Saleh, Tingyue Gu. Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A [J]. J. Mater. Sci. Technol., 2022, 107(0): 43-51. |
[6] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[7] | M.C. Niu, K. Yang, J.H. Luan, W. Wang, Z.B. Jiao. Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels [J]. J. Mater. Sci. Technol., 2022, 104(0): 52-58. |
[8] | Jinlong Zhao, Chunguang Yang, Ke Yang. Novel Cu-bearing stainless steel: A promising food preservation material [J]. J. Mater. Sci. Technol., 2022, 113(0): 246-252. |
[9] | Jun Li, Cuiwei Du, Zhiyong Liu, Xiaogang Li. Electrochemical studies of microbiologically influenced corrosion of X80 steel by nitrate-reducing Bacillus licheniformis under anaerobic conditions [J]. J. Mater. Sci. Technol., 2022, 118(0): 208-217. |
[10] | Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112(0): 184-194. |
[11] | Qiyu Wang, Shenghu Chen, Xinliang Lv, Haichang Jiang, Lijian Rong. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114(0): 7-15. |
[12] | Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Zhejian Wen, Junyu Ren, Peide Han. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 115(0): 103-114. |
[13] | Chuanliang Wei, Liwen Tan, Yuchan Zhang, Huiyu Jiang, Baojuan Xi, Shenglin Xiong, Jinkui Feng. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes [J]. J. Mater. Sci. Technol., 2022, 115(0): 156-165. |
[14] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
[15] | Xiaodong Lin, Qunjia Peng, En-Hou Han, Wei Ke. Deformation and cracking behaviors of proton-irradiated 308L stainless steel weld metal strained in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 120(0): 36-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||