J. Mater. Sci. Technol. ›› 2022, Vol. 128: 133-141.DOI: 10.1016/j.jmst.2022.04.027
• Research Article • Previous Articles Next Articles
Gao Kefenga,b, Guan Jianjuna, Sun Huic, Han Chengweid, Tan Guoqib,e, Liu Zengqiana,e,*(), Wang Qiangc,*(
), Zhang Zhefengb,e
Received:
2022-03-01
Revised:
2022-04-09
Accepted:
2022-04-25
Published:
2022-11-20
Online:
2022-11-22
Contact:
Liu Zengqian,Wang Qiang
About author:
mfqwang@cmu.edu.cn (Q.Wang).Gao Kefeng, Guan Jianjun, Sun Hui, Han Chengwei, Tan Guoqi, Liu Zengqian, Wang Qiang, Zhang Zhefeng. Friction and wear behavior of bioinspired composites with nacre-like lamellar and brick-and-mortar architectures against human enamel[J]. J. Mater. Sci. Technol., 2022, 128: 133-141.
Fig. 1. Overall appearances and micrographs of the bioinspired ceramic-polymer composites with nacre-like (a) lamellar and (b) brick-and-mortar architectures which resemble, respectively, the human tooth dentin and enamel in their hardness and Young's modulus. Light gray: ceramic phase; dark gray: polymer phase. (c) Representative microstructures of human tooth enamel on the polished occlusal cross-section. The inset shows the overall appearance of a premolar tooth. The micrograph in (c) is adapted with permission from Ref. [35].
Fig. 2. (a) Schematic illustration of the reciprocating ball-on-flat sliding configuration for the wear tests of bioinspired composites against human tooth enamel. The appearance of the tooth cusp tip used for wear tests is also shown (right panel). (b) Schematic illustration of the longitudinal (L) and transverse (T) directions for the sliding motion of human enamel against bioinspired composites with respect to their nacre-like lamellar and brick-and-mortar architectures.
Fig. 3. Variations in the coefficient of friction (COF) with time for the bioinspired ceramic-polymer composites with nacre-like (a) lamellar and (b) brick-and-mortar architectures wearing against human enamel along different directions. (c) Corresponding data for 3Y-TZP is shown as a comparison. (d) Comparison of the average COFs between groups by excluding the initial increasing stage. The differences are statistically insignificant between longitudinal and transverse directions when considering each individual architectural type. “☆” indicates statistically significant differences between lamellar and brick-and-mortar architectures when considering the same direction. “#” indicates statistically significant differences between bioinspired composites and 3Y-TZP.
Fig. 4 (a) Representative tomographic morphologies of the tip region for a tooth cusp sample before and after wearing with bioinspired ceramic-polymer composites (by taking the case for lamellar architecture along the transverse direction as an example). Comparison of (b) the diameter of circular wear pattern, (c) wear volume, and (d) wear rate of human tooth enamel after wearing against different materials and along different directions. Statistically significant differences between different architectural types of bioinspired composites when considering the same direction are indicated by “☆”. Statistically significant differences between bioinspired composites and 3Y-TZP are indicated by “#”.
Fig. 5. Representative wear morphologies of human tooth enamel after wearing against bioinspired composites with nacre-like (a, b) lamellar and (c, d) brick-and-mortar architectures along (a, c) longitudinal and (b, d) transverse directions at a relatively coarse scale of tens of micrometers. (e) Higher-magnification micrographs of the wear morphologies of human tooth enamel at a finer scale.
Fig. 6. Representative wear morphologies of bioinspired ceramic-polymer composites with nacre-like (a, b) lamellar and (c, d) brick-and-mortar architectures after wearing against human enamel along (a, c) longitudinal and (b, d) transverse directions.
Fig. 7. Schematic illustrations of the micro-wear mechanisms of bioinspired ceramic-polymer composites with nacre-like (a, b) lamellar and (c, d) brick-and-mortar architectures wearing against human tooth enamel along (a, c) longitudinal and (b, d) transverse directions. Dark brown: ceramic phase; light brown: polymer phase. (e) Wear mechanisms of the antagonist human tooth enamel at different length scales. HAP: hydroxyapatite.
[1] |
G. Kaur, V. Kumar, F. Baino, J.C. Mauro, G. Pickrell, I. Evans, O. Bretcanu, Mater. Sci. Eng. C 104 (2019) 109895.
DOI URL |
[2] |
I. Denry, J.R. Kelly, J. Dent. Res. 93 (2014) 1235-1242.
DOI PMID |
[3] | C. Piconi, G. Maccauro, Biomaterials 20 (1999) 1-25. |
[4] |
H.Z. Yang, Y. Ji, J. Mater. Sci. Technol. 32 (2016) 593-596.
DOI URL |
[5] |
P. Shelar, S. Butler, H. Abdolvand, J. Mech. Behav. Biomed. Mater. 124 (2021) 104861.
DOI URL |
[6] |
R.G. Craig, F.A. Peyton, J. Dent. Res. 37 (1958) 710-718.
DOI URL |
[7] |
H.H.K. Xu, D.T. Smith, S. Jahanmir, E. Romberg, J.R. Kelly, V.P. Thompson, E. D. Rekow, J. Dent. Res. 77 (1998) 472-480.
PMID |
[8] |
R. DeLong, C. Sasik, M.R. Pintado, W.H. Douglas, Dent. Mater. 5 (1989) 266-271.
PMID |
[9] |
N.D. Ruse, M.J. Sadoun, J. Dent. Res. 93 (2014) 1232-1234.
DOI PMID |
[10] | B.R. Lawn, A. Pajares, Y. Zhang, Y. Deng, M.A. Polack, I.K. Lloyd, E.D. Rekow, V. P. Thompson, Biomaterials 25 (2004) 2885-2892. |
[11] |
L.H. He, M. Swain, Dent. Mater. 27 (2011) 527-534.
DOI URL |
[12] |
D. Chaysuwan, K. Sirinukunwattana, K. Kanchanatawewat, G. Heness, K. Ya- mashita, Dent. Mater. J. 30 (2011) 358-367.
DOI URL |
[13] |
A. Coldea, M.V. Swain, N. Thiel, Dent. Mater. 29 (2013) 419-426.
DOI URL |
[14] | A.L. Torres, V.M. Gaspar, I.R. Serra, G.S. Diogo, R. Fradique, A.P. Silva, I.J. Correia, Mater. Sci. Eng. C 33 (2013) 4 460-4 469. |
[15] |
R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio, Acta Mater. 48 (20 0 0) 2383-2398.
DOI URL |
[16] | S. Kamat, X. Su, R. Ballarini, A.H. Heuer, Nature 405 (20 0 0) 1036-1040. |
[17] | A.P. Jackson, J.F.V. Vincent, R.M. Turner,Proc. R. Soc. Lond. B 234 (1988) 415-440. |
[18] |
R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, I.A. Aksay, J. Mater. Res. 16 (2001) 2485-2493.
DOI URL |
[19] |
U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Nat. Mater. 14 (2015) 23-36.
DOI URL |
[20] |
W. Huang, D. Restrepo, J. Jung, F.Y. Su, Z. Liu, R.O. Ritchie, J. McKittrick, P. Za- vattieri, D. Kisailus, Adv. Mater. 31 (2019) 1901561.
DOI URL |
[21] |
D. Jiao, Z.Q. Liu, Y.K. Zhu, Z.Y. Weng, Z.F. Zhang, Mater. Sci. Eng. C 68 (2016) 9-17.
DOI URL |
[22] | H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Prog. Mater. Sci. 54 (2009) 17-44. |
[23] |
A.R. Studart, Adv. Mater. 24 (2012) 5024-5044.
DOI URL |
[24] | E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Science 322 (2008) 1516-1520. |
[25] |
Z.Y. Mao, M.K. Huo, F. Lyu, Y.S. Zhou, Y. Bu, L. Wan, L.L. Pan, J. Pan, H. Liu, J. Lu, J. Mater. Sci. Technol. 114 (2022) 172-179.
DOI URL |
[26] |
F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A.J. Stevenson, S. Deville, Strong, Nat. Mater. 13 (2014) 508-514.
DOI PMID |
[27] | B. Yeom, T. Sain, N. Lacevic, D. Bukharina, S.H. Cha, A.M. Waas, E.M. Arruda, N.A. Kotov, Nature 543 (2017) 95-98. |
[28] |
G.Q. Tan, J. Zhang, L. Zheng, D. Jiao, Z.Q. Liu, Z.F. Zhang, R.O. Ritchie, Adv. Mater. 31 (2019) 1904603.
DOI URL |
[29] |
G.Q. Tan, Q. Yu, Z.Q. Liu, X.G. Wang, M.Y. Zhang, Y.Y. Liu, Z.F. Zhang, R.O. Ritchie, Scr. Mater. 203 (2021) 114089.
DOI URL |
[30] | H. Zhang, S.H. Liu, H.P. Xiao, X. Zhang, Materials 11 (2018) 1563. |
[31] |
P. Stempflé, X. Bourrat, O. Pantalé, R.K. Njiwa, J.P. Jehl, A. Domatti, E. Lopez, Mater. Sci. Eng. C 91 (2018) 78-93.
DOI URL |
[32] |
G.H. Yassen, J.A. Platt, A.T. Hara, J. Oral Sci. 53 (2011) 273-282.
DOI URL |
[33] |
J.L.O. Tanaka, E. Medici Filho, J.A.P. Salgado, M.A.C. Salgado, L.C.D. Moraes, M. E.L.D. Moraes, J. C.D.M. Castilho, Braz. Oral Res. 22 (2008) 346-351.
DOI URL |
[34] |
B.B. An, R.R. Wang, D.S. Zhang, Acta Biomater. 8 (2012) 3784-3793.
DOI URL |
[35] |
T.E. Popowics, J.M. Rensberger, S.W. Herring, Arch. Oral Biol. 49 (2004) 595-605.
PMID |
[36] |
J. Reyes-Gasga, E.L. Martínez-Piñeiro, G. Rodríguez-Álvarez, G.E. Tiz- nado-Orozco, R. García-García, E.F. Brès, Mater. Sci. Eng. C 33 (2013) 4568-4574.
DOI URL |
[37] | K.A. DeRocher, P.J.M. Smeets, B.H. Goodge, M.J. Zachman, P.V. Balachandran, L. Stegbauer, M.J. Cohen, L.M. Gordon, J.M. Rondinelli, L.F. Kourkoutis, Nature 583 (2020) 66-71. |
[38] |
G. Mitov, S.D. Heintze, S. Walz, K. Woll, F. Muecklich, P. Pospiech, Dent. Mater. 28 (2012) 909-918.
DOI URL |
[39] |
M.J. Kim, S.H. Oh, J.H. Kim, S.W. Ju, D.G. Seo, S.H. Jun, J.S. Ahn, J.J. Ryu, J. Dent. 40 (2012) 979-988.
DOI URL |
[40] | A. Carvalho, P. Pinto, S. Madeira, F.S. Silva, O. Carvalho, J.R. Gomes, Biotribology 23 (2020) 100140. |
[41] |
M. Buciumeanu, J.R.C. Queiroz, A.E. Martinelli, F.S. Silva, B. Henriques, Tribol. Int. 116 (2017) 192-198.
DOI URL |
[42] |
Z.R. Zhou, J. Zheng, J. Phys. D 41 (2008) 113001.
DOI URL |
[43] | Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear, ASTM Int, 2010. |
[44] |
C.F. Gutierrez-Gonzalez, A. Smirnov, A. Centeno, A. Fernandez, B. Alonso, V. G. Rocha, R. Torrecillas, A. Zurutuza, J.F. Bartolome, Ceram. Int. 41 (2015) 7434-7438.
DOI URL |
[45] |
L. Hua, J. Zheng, Z. Zhou, Z.R. Tian, ACS Biomater. Sci. Eng. 4 (2018) 2364-2369.
DOI URL |
[46] |
J. Zheng, Y. Li, M.Y. Shi, Y.F. Zhang, L.M. Qian, Z.R. Zhou, Tribol. Int. 63 (2013) 177-185.
DOI URL |
[47] | M. Addy, Int. Dent. J. 51 (2006) 226-231. |
[48] |
J.H. Nunn, Eur. J. Oral Sci. 104 (1996) 156-161.
PMID |
[49] |
S. Janyavula, N. Lawson, D. Cakir, P. Beck, L.C. Ramp, J.O. Burgess, J. Prosthet. Dent. 109 (2013) 22-29.
DOI PMID |
[1] | Mun Sik Jeong, Tak Min Park, Dong-Il Kim, Hidetoshi Fujii, Hye Ji Im, Pyuck-Pa Choi, Seung-Joon Lee, Jeongho Han. Improving toughness of medium-Mn steels after friction stir welding through grain morphology tuning [J]. J. Mater. Sci. Technol., 2022, 118(0): 243-254. |
[2] | C.L. Jia, L.H. Wu, P. Xue, H. Zhang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Static spheroidization and its effect on superplasticity of fine lamellae in nugget of a friction stir welded Ti-6Al-4V joint [J]. J. Mater. Sci. Technol., 2022, 119(0): 1-10. |
[3] | Seungchan Cho, Junghwan Kim, Ilguk Jo, Jae Hyun Park, Jaekwang Lee, Hyun-Uk Hong, Bong Ho Lee, Wook Ryol Hwang, Dong-Woo Suh, Sang-Kwan Lee, Sang-Bok Lee. Quantitative reorientation behaviors of macro-twin interfaces in shape-memory alloy under compression stimulus in situ TEM [J]. J. Mater. Sci. Technol., 2022, 107(0): 243-251. |
[4] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
[5] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[6] | Y. Tao, Z. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of post weld artificial aging and water cooling on microstructure and mechanical properties of friction stir welded 2198-T8 Al-Li joints [J]. J. Mater. Sci. Technol., 2022, 123(0): 92-112. |
[7] | X.B. Meng, J.G. Li, C.N. Jing, J.D. Liu, S.Y. Ma, J.J. Liang, C.W. Zhang, M. Wang, B.T. Tang, T. Lin, J.L. Chen, X.L. Zhang, Q. Li. Misorientation dependent thermal condition-solute field cooperative effect on competitive grain growth in the converging case during directional solidification of a nickel-base superalloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 151-159. |
[8] | Yuan Zhang, Guoqi Tan, Mingyang Zhang, Qin Yu, Zengqian Liu, Yanyan Liu, Jian Zhang, Da Jiao, Faheng Wang, Longchao Zhuo, Zhefeng Zhang, Robert O. Ritchie. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96(0): 21-30. |
[9] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[10] | Dapeng Zhu, Weiwei Liu, Rongzhi Zhao, Zhen Shi, Xiangyang Tan, Zhenhua Zhang, Yixing Li, Lianze Ji, Xuefeng Zhang. Microscopic insights into hydrophobicity of cerium oxide: Effects of crystal orientation and lattice constant [J]. J. Mater. Sci. Technol., 2022, 109(0): 20-29. |
[11] | Sheng Ding, Jingwei Zhang, Sabrina Alam Khan, Jun Yanagimoto. Static recovery of A5083 aluminum alloy after a small deformation through various measuring approaches [J]. J. Mater. Sci. Technol., 2022, 104(0): 202-213. |
[12] | Jing Wei, Peng Guo, Hao Li, Peiling Ke, Aiying Wang. Insights on high temperature friction mechanism of multilayer ta-C films [J]. J. Mater. Sci. Technol., 2022, 97(0): 29-37. |
[13] | Siyuan Wei, Yakai Zhao, Jae-il Jang, Upadrasta Ramamurty. Rate-dependent mechanical behavior of single-, bi-, twinned-, and poly-crystals of CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 120(0): 253-264. |
[14] | Pengsheng Xue, Lida Zhu, Jinsheng Ning, Peihua Xu, Shuhao Wang, Zhichao Yang, Yuan Ren, Guiru Meng. The crystallographic texture and dependent mechanical properties of the CrCoNi medium-entropy alloy by laser remelting strategy [J]. J. Mater. Sci. Technol., 2022, 111(0): 245-255. |
[15] | Tingting Zhang, Yuanyuan Gong, Bin Wang, Dongyu Cen, Feng Xu. Crystallography of the martensitic transformation between Ni2In-type hexagonal and TiNiSi-type orthorhombic phases [J]. J. Mater. Sci. Technol., 2022, 104(0): 59-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||