J. Mater. Sci. Technol. ›› 2022, Vol. 109: 20-29.DOI: 10.1016/j.jmst.2021.08.064
• Research Article • Previous Articles Next Articles
Dapeng Zhua,b,1, Weiwei Liub,1, Rongzhi Zhaoa, Zhen Shib,*(), Xiangyang Tana, Zhenhua Zhangb, Yixing Lia, Lianze Jia,b, Xuefeng Zhanga,b,*(
)
Received:
2021-06-25
Revised:
2021-07-28
Accepted:
2021-08-01
Published:
2022-05-20
Online:
2021-10-31
Contact:
Zhen Shi,Xuefeng Zhang
About author:
zhangxf@atm.neu.edu.cn (X. Zhang).Dapeng Zhu, Weiwei Liu, Rongzhi Zhao, Zhen Shi, Xiangyang Tan, Zhenhua Zhang, Yixing Li, Lianze Ji, Xuefeng Zhang. Microscopic insights into hydrophobicity of cerium oxide: Effects of crystal orientation and lattice constant[J]. J. Mater. Sci. Technol., 2022, 109: 20-29.
Fig. 2. (a) The FIB cut cerium oxide sample cross-sectional images with oxygen flow ratio 42%. (b) and (c) the HRTEM images take from the dotted rectangle in (a) and (d), respectively. (d) The cross-section EDS images of the cerium oxide sample take from the dotted rectangle in (a). (e) and (f) Fast Fourier Transform (FFT) patterns taken from the dotted square in (b) and (c), respectively. (g) The FIB cut cerium oxide sample cross-sectional images with oxygen flow ratio 2%. (h) and (i) the HRTEM images take from the dotted rectangle in (g) and (j), respectively. (j) The cross-section EDS images of cerium oxide sample take from the dotted rectangle in (g). (k) and (l) Fast Fourier Transform (FFT) patterns taken from the dotted square in (h) and (i), respectively.
Oxygen flow ratios (at.%) | Atomic fraction (at.%) | O/Ce | ||
---|---|---|---|---|
Empty Cell | Si | O | Ce | Empty Cell |
42% | 0.56 | 68.47 | 30.97 | 2.21 |
2% | 1.57 | 68.96 | 29.47 | 2.34 |
Table 1. Atomic fraction of cerium oxide with different oxygen flow rations.
Oxygen flow ratios (at.%) | Atomic fraction (at.%) | O/Ce | ||
---|---|---|---|---|
Empty Cell | Si | O | Ce | Empty Cell |
42% | 0.56 | 68.47 | 30.97 | 2.21 |
2% | 1.57 | 68.96 | 29.47 | 2.34 |
Fig. 3. (a) The XPS spectra of cerium oxide surface with high oxygen and low oxygen. (b), (c) and (d) O 1 s and C 1 s and Ce 3d XPS spectra of the cerium oxide surface, respectively. (e) The relative content of Ce3+ and Ce4+. (f) The relative element content of Olatt and C-C/C-H.
Fig. 4. (a) and (b) Schematic representation of the adsorption energy of water molecules on the (111) surface and the (220) surface, respectively. (c) The relationship between adsorption energy and different orientations. (d) and (e) the projected density of states (PDOS) of O(a)-H(a) bond and O(b)-H(b) bond of the (111) surface, respectively. (f) and (g) the projected density of states (PDOS) of O(a)-H(a) bond and O(b)-H(b) bond of the (220) surface, respectively.
Fig. 5. (a) The XRD pattern of different annealing temperatures (as-deposited, 300 °C and 600 °C). (b) The magnified XRD pattern of (111) orientation in (a).
Fig. 6. (a) The XPS spectra of the cerium oxide surface with different annealing temperatures. (b), (c) and (d) are O 1 s, C 1 s and Ce 3d XPS spectra of the cerium oxide surface, respectively. (e) The relative element content of Ce3+ and Ce4+. (f) The relative element content of C-C/C-H and molecular water.
Fig. 7. (a), (b) and (c) Schematic representations of the adsorption energy of the water molecule on the (111) surface under different lattice strain (0.012, 0.018 and 0.042), respectively. (d) The relationship between lattice constant and interplanar spacing of (111) surface. (e) The relationship between adsorption energy and lattice constant of (111) surface.
Fig. 8. (a), (d) and (g) O(a)-H(a) bond of the projected density of states (PDOS) of the water molecule on the (111) surface under different lattice constants (5.394 Å, 5.426 Å and 5.554 Å), respectively. (b), (e) and (h) O(b)-H(b) bond of the projected density of states (PDOS) of the water molecule on the (111) surface under different lattice constants (5.394 Å, 5.426 Å and 5.554 Å), respectively. (c), (e) and (i) schematic of the O-H bond of the projected density of states (PDOS) of the water molecule on the (111) surface under different lattice constants (5.394 Å, 5.426 Å and 5.554 Å), respectively.
Fig. 9. (a) The relationship between the water contact angle and the different crystal orientations. (c) The relationship between water contact angle and different lattice constants.
Oxygen flow ratio | High oxygen (42%) | Low oxygen (2%) |
---|---|---|
WCA (°) | 105.9 | 91.7 |
DCA (°) | 60.4 | 43.9 |
SFE (mN/m) | 28.44 | 38.48 |
| 28.38 | 37.60 |
| 0.06 | 0.88 |
| 51.00 | 51.00 |
| 21.80 | 21.80 |
Table 2. The water contact angle (WCA) and the diiodiomethane contact angle (DCA) and surface free energy (SFE), the polar parts and the dispersive parts of surface free energy of solid and liquid $\left( \gamma _{\text{SV}}^{\text{p}},\gamma _{\text{LV}}^{\text{p}},\gamma _{\text{SV}}^{\text{d}},\gamma _{\text{LV}}^{\text{d}} \right)$.
Oxygen flow ratio | High oxygen (42%) | Low oxygen (2%) |
---|---|---|
WCA (°) | 105.9 | 91.7 |
DCA (°) | 60.4 | 43.9 |
SFE (mN/m) | 28.44 | 38.48 |
| 28.38 | 37.60 |
| 0.06 | 0.88 |
| 51.00 | 51.00 |
| 21.80 | 21.80 |
[1] |
T. Koishi, K. Yasuoka, S. Fujikawa, X.C. Zeng, ACS. Nano. 5 (2011) 6834-6842.
DOI URL |
[2] |
S. Meng, Z. Zhang, E. Kaxiras, Phys. Rev. Lett. 97 (2006) 036107.
DOI URL |
[3] |
H. Li, X.C. Zeng, ACS. Nano. 6 (2012) 2401-2409.
DOI URL |
[4] |
J. Rafiee, X. Mi, H. Gullapalli, A. Thomas, F. Yavari, Y.F. Shi, P.M. Ajayan, N.A. Ko-ratkar, Nat. Mater. 11 (2012) 217-222.
DOI PMID |
[5] |
M. Liu, S. Wang, L. Jiang, Nat. Rev. Mater. 2 (2017) 17036.
DOI URL |
[6] |
L. Zhang, A.G. Zhou, B.R. Sun, K.S. Chen, H.Z. Yu, Nat. Commun. 12 (2021) 982.
DOI URL |
[7] |
L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma, Y. Liu, S. Gao, W. Zhang, Small 15 (2019) 1902730.
DOI URL |
[8] |
B. Su, Y. Tian, L. Jiang, J. Am. Chem. Soc. 138 (2016) 1727-1748.
DOI URL |
[9] | X. Li, J. Yang, K. Lv, P. Papadopoulos, J. Sun, D. Wang, Y. Zhao, L. Chen, D. Wang, Z. Wang, X. Deng, Natl. Sci. Rev. 8 (2021) 114-124. |
[10] |
R.N. Wenzel, Ind. Eng. Chem. 28 (1936) 988-994.
DOI URL |
[11] |
A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40 (1944) 546-551.
DOI URL |
[12] | Y. Jiang, Y. Wang, H. Wu, Y. Wang, R. Zhang, H. Olin, Y. Yang, Nano-Micro. Lett. 11 (2019) 1-11. |
[13] |
Q. Yin, Q. Guo, Z. Wang, Y. Chen, P. Cheng, ACS Appl. Mater. Inter. 13 (2020) 1979-1987.
DOI URL |
[14] |
S. Renneckar, Y. Zhou, ACS Appl. Mater. Interfaces 1 (2009) 559-566.
DOI URL |
[15] |
C. Peng, Z. Chen, M.K. Tiwari, Nat. Mater. 17 (2018) 355-360.
DOI URL |
[16] |
S.N. Zhang, J.Y. Huang, Y.X. Tang, S.H. Li, M.Z. Ge, Z. Chen, K.Q. Zhang, Y.K. Lai, Small 13 (2017) 1600687.
DOI URL |
[17] |
E.J. Falde, S.T. Yohe, Y.L. Colson, M.W. Grinstaff, Biomaterials 104 (2016) 87-103.
DOI PMID |
[18] |
R. Lundy, C. Byrne, J. Bogan, K. Nolan, M.N. Collins, E. Dalton, R. Enrightet, ACS Appl. Mater. Interfaces 9 (2017) 13751-13760.
DOI URL |
[19] | H. Wu, L. Xie, R. Zhang, Y. Tian, S. Liu, M. He, C. Huang, W.D. Tian, Appl. Phys. Lett. 479 (2019) 1089-1097. |
[20] |
G. Azimi, R. Dhiman, H.-.M. Kwon, A.T. Paxson, K.K. Varanasi, Nat. Mater. 12 (2013) 315-320.
DOI URL |
[21] |
Z. Shi, P. Shum, Z.F. Zhou, K.Y. Li, Surf. Coating. Tech. 320 (2016) 333-338.
DOI URL |
[22] |
T. Kolodiazhnyi, H. Sakurai, A.A. Belik, O.V. Gornostaeva, Acta Mater 113 (2016) 116-123.
DOI URL |
[23] |
J.G. Li, T. ikegami, J.H. Lee, T. Mori, Acta Mater 49 (2001) 419-426.
DOI URL |
[24] |
D.J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney, E.N. Wang, Appl. Phys. Lett. 105 (2014) 011601.
DOI URL |
[25] |
G.L. Carchini, M. García-Melchor, Z.N. Łodziana, N. Lo $\acute{\text{p}}$ez, ACS Appl. Mater. Interfaces 8 (2016) 152-160.
DOI URL |
[26] |
Z. Shi, P. Shum, Z.F. Zhou, L.K. Li, Surf. Coating. Tech. 326 (2017) 411-416.
DOI URL |
[27] |
S. Zenkin, S. Kos, J.R. Musil, J. Am. Ceram. Soc. 97 (2014) 2713-2717.
DOI URL |
[28] |
D. Quéré, Annu. Rev. Mater. Res. 38 (2008) 71-99.
DOI URL |
[29] | Y.J. Mao, X.H. Liu, F. Zhang, C.X. Ren, S.C. Zou, Surf. Coat. Tech. 103 (1998) 78-82. |
[30] |
Z. Yang, T.K. Woo, M. Baudin, K. Hermansson, J. Chem. Phys. 120 (2004) 7741-7749.
DOI URL |
[31] |
J. Tam, B. Feng, Y. Ikuhara, H. Ohta, U. Erb, J. Mater. Chem. A 6 (2018) 18384-18388.
DOI URL |
[32] |
M. Gritschneder, M. Reichling, Nanotechnology 18 (2007) 044024.
DOI URL |
[33] |
R. Sharma, P.A. Crozier, Z.C. Kang, L. Exring, Philos. Mag. 84 (2004) 2731-2747.
DOI URL |
[34] |
P.A. Crozier, R.G. Wang, R. Sharma, Ultramicroscopy 108 (2008) 1432-1440.
DOI PMID |
[35] |
C. Force, E. Roman, J.M. Guil, J. Sanz, Langmuir 23 (2007) 4569-4574.
PMID |
[36] |
B.M. Reddy, P. Saikia, P. Bharali, J. Phys. Chem. C 112 (2008) 16393-16399.
DOI URL |
[37] |
M. Yan, T. Mori, J. Zou, F. Ye, J. Drennan, Acta Mater 57 (2009) 722-731.
DOI URL |
[38] | T. Stefan, R.L. Michael, Phys. Rev. Lett. 99 (2007) 05610. |
[39] |
S. Huang, L. Li, O. Biest, J. Vleugels, Solid State Sci 7 (2005) 539-544.
DOI URL |
[40] |
S. Khan, G. Azimi, B. Yildiz, K. Varanasi, Appl. Phys. Lett. 106 (2015) 061601.
DOI URL |
[41] |
X.D. Hao, A. Yoko, K.S. Inoue, Y. Xu, M.H. Saito, C.l. Chen, G.Y. Seong, T.K. Tomai, S.C. Takami, A.L. Shluger, B.S. Xu, T.F. Adschiri, Y.C. Ikuhara, Acta Mater 203 (2021) 116473.
DOI URL |
[42] | W.Y. Lei, T.T. Zhang, L. Gu, P. Liu, José.A. Rodriguez, G. Liu, M. Liu, Acs. Catal. 5 (2015) 150605134238005. |
[43] |
D. Adam, J.J. Michael Mayernick, J. Phys. Chem. C. 112 (2008) 14955-14964.
DOI URL |
[44] |
D.P. Zhu, Z. Shi, X.Y. Tan, J. Zhang, S.H. Zhang, X.F. Zhang, Appl. Surf. Sci. 527 (2020) 146741.
DOI URL |
[45] |
T. Skaltsas, X. Ke, C. Bittencourt, N. Tagmatarchis, J. Phys. Chem. C. 117 (2013) 23272-23278.
DOI URL |
[46] |
G. Greczynski, L. Hultman, Angew. Chem. Int. Ed. 59 (2020) 5002-5006.
DOI PMID |
[47] |
D.P. Zhu, X.Y. Tan, L.Z. Ji, Z. Shi, X.F. Zhang, Vacuum 184 (2021) 109888.
DOI URL |
[48] |
M. Fronzi, M.H.N. Assadi, D.A.H. Hanaor, Appl. Surf. Sci. 478 (2019) 68-74.
DOI |
[49] |
S. Kumar, P.K. Schelling, J. Chem. Phys. 125 (2006) 204704.
DOI URL |
[50] |
M. Henderson, C. Perkins, M. Engelhard, S. Thevuthasan, C. Peden, Surf. Sci. 526 (2003) 1-18.
DOI URL |
[51] |
C. Zhu, H. Li, Y. Huang, C.Z. Xiao, S. Meng, Phys. Rev. Lett. 110 (2013) 126101.
DOI URL |
[52] |
G. Greczynski, L. Hultman, Prog. Mater. Sci. 107 (2019) 100591.
DOI URL |
[53] |
L.B. Tery, S. Sudipta Barr, J. Vac. Sci. Technol. A 13 (1995) 1239.
DOI URL |
[54] |
N. Mora, E. Cano, J.L. Polo, J.M. Puente, J.M. Bastidas, Corros. Sci. 46 (2004) 563-578.
DOI URL |
[55] | A. Galtayries, R. Sporken, J. Riga, G. Blanchard, R. Caudano, J. Electron. Spec-trosc. Relat. Phenom.. (1998) 951-956 88-91. |
[56] |
J.P. Holgado, G. Munuera, J.P. Espinós, A.R. González-Elipe, Appl. Surf. Sci. 158 (2000) 164-171.
DOI URL |
[57] |
E. Paparazzo, Surf. Sci. 234 (1990) L253-L258.
DOI URL |
[58] |
F. Larachi, J. Pierre, A. Adnot, A. Bernis, Appl. Surf. Sci. 195 (2002) 236-250.
DOI URL |
[59] |
J. Fan, X. Wu, L. Yang, D. Weng, Catal. Today 126 (2007) 303-312.
DOI URL |
[60] |
L. Martínez, E. Romána, J.L. Segoviaa, S. Poupardb, J. Creus, F. Pedraza, Appl. Surf. Sci. 257 (2011) 6202-6207.
DOI URL |
[61] |
L. Külah, R. Marot, A. Steiner, T.A. Romanyuk, A. Jung, E. Wäckerlin, E. Meyer, Sci. Rep. 7 (2017) 43369.
DOI URL |
[62] |
S. Prakash, A. Ghosh, M. Patra, M.R. Annamalai, S. Motapothula, S.J. Sarkar, S.J. Tan, J. Zhunan, K.P. Loh, T. Venkatesan, Nanoscale 10 (2018) 3356-3361.
DOI PMID |
[63] | P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, J. Chem. Soc. Dalton Trans. 17 (1976) 1686-1698. |
[64] |
D.L. Perry, T.H.G. Brittain, J. Mater. Sci. Lett. 3 (1984) 1017-1019.
DOI URL |
[65] |
H.T. Chen, Y.M. Choi, M. Liu, M.C. Lin, ChemPhysChem 8 (2007) 849.
DOI URL |
[66] |
D.K. Owens, R.C. Wendt, J. Appl. Polym. Sci. 13 (1969) 1741-1747.
DOI URL |
[67] | W. Rabel, Farbe Lack 77 (1971) 997-1005. |
[68] |
A.A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, F. Placido, Acta Mater 53 (2005) 5151-5159.
DOI URL |
[69] |
D. Kaeble, C. Uy, J. Adhes. 2 (1970) 50-60.
DOI URL |
[70] |
S. Zenkin, A. Belosludtsev, Š. Kos, Appl. Phys. Lett. 108 (2016) 231602.
DOI URL |
[1] | Zhao-Hui Zhang, Zuan-Yu Chen, Yi-Hao Tang, Yu-Tong Li, Dequan Ma, Guo-Dong Zhang, Rabah Boukherroub, Cheng-Fei Cao, Li-Xiu Gong, Pingan Song, Kun Cao, Long-Cheng Tang. Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation [J]. J. Mater. Sci. Technol., 2022, 114(0): 131-142. |
[2] | Li-Chuan Jia, Chang-Ge Zhou, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Facile fabrication of highly durable superhydrophobic strain sensors for subtle human motion detection [J]. J. Mater. Sci. Technol., 2022, 110(0): 35-42. |
[3] | Ji Li, Tianci Yuan, Chengliang Zhou, Bo Chen, Yi Shuai, Dawang Wu, Dongchu Chen, Xiaohu Luo, Y.Frank Cheng, Yali Liu. Facile Li-Al layered double hydroxide films on Al alloy for enhanced hydrophobicity, anti-biofouling and anti-corrosion performance [J]. J. Mater. Sci. Technol., 2021, 79(0): 230-242. |
[4] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[5] | Pengyun Xu, Guohui Meng, Larry Pershin, Javad Mostaghimi, Thomas W. Coyle. Control of the hydrophobicity of rare earth oxide coatings deposited by solution precursor plasma spray by hydrocarbon adsorption [J]. J. Mater. Sci. Technol., 2021, 62(0): 107-118. |
[6] | Zhao-Qi Zhang, Rong-Chang Zeng, Cun-Guo Lin, Li Wang, Xiao-Bo Chen, Dong-Chu Chen. Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 41(0): 43-55. |
[7] | Hongmin Jia, Xiaohui Feng, Yuansheng Yang. Effect of crystal orientation on corrosion behavior of directionally solidified Mg-4 wt% Zn alloy [J]. J. Mater. Sci. Technol., 2018, 34(7): 1229-1235. |
[8] | Guowei Wang, Jingjing Liang, Yizhou Zhou, Libin Zhao, Tao Jin, Xiaofeng Sun. Variation of crystal orientation during epitaxial growth of dendrites by laser deposition [J]. J. Mater. Sci. Technol., 2018, 34(4): 732-735. |
[9] | V. Mashtalyar Dmitry, V. Nadaraia Konstantine, L. Sinebryukhov Sergey, V. Gnedenkov Sergey. Protective Composite Coatings Formed on Mg Alloy Surface by PEO Using Organofluorine Materials [J]. J. Mater. Sci. Technol., 2017, 33(7): 661-667. |
[10] | Shuai Li, Qingsong Wei, Yusheng Shi, Zicheng Zhu, Danqing Zhang. Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting [J]. J. Mater. Sci. Technol., 2015, 31(9): 946-952. |
[11] | Fen Zhang, Changlei Zhang, Liang Song, Rongchang Zeng, Shuoqi Li, Hongzhi Cui. Fabrication of the Superhydrophobic Surface on Magnesium Alloy and Its Corrosion Resistance [J]. J. Mater. Sci. Technol., 2015, 31(11): 1139-1143. |
[12] | Y.P. Li, M.K. Lei. Nanotexturing and Wettability Ageing of Polypropylene Surfaces Modified by Oxygen Capacitively Coupled Radio Frequency Plasma [J]. J. Mater. Sci. Technol., 2014, 30(10): 965-972. |
[13] | H.Hasannejad, T.Shahrabi, A.Sabour Rouhaghdam, M.Aliofkhazraei. Effect of Temperature on Pitting Corrosion Resistance of 316 Stainless Steel Coated by Cerium Oxide Film in 3.5% NaCl Solution [J]. J Mater Sci Technol, 2008, 24(05): 715-717. |
[14] | Ailan QU, Xiufang WEN, Pihui PI, Jiang CHENG, Zhuoru YANG. Morphologies and Superhydrophobicity of Hybrid Film Surfaces Based on Silica and Fluoropolymer [J]. J Mater Sci Technol, 2008, 24(05): 693-699. |
[15] | Fei SHI, Lijiu WANG, Jingxiao LIU, Miao ZENG. Effect of Heat Treatment on Silica Aerogels Prepared via Ambient Drying [J]. J Mater Sci Technol, 2007, 23(03): 402-406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||