J. Mater. Sci. Technol. ›› 2022, Vol. 109: 30-48.DOI: 10.1016/j.jmst.2021.07.051
• Research Article • Previous Articles Next Articles
Xinde Huanga, Yunchang Xinb,*(), Yu Caoa, Guangjie Huanga,*(
), Wei Lia
Received:
2021-05-18
Revised:
2021-07-14
Accepted:
2021-07-20
Published:
2021-10-28
Online:
2021-10-28
Contact:
Yunchang Xin,Guangjie Huang
About author:
gjhuang@cqu.edu.cn (G. Huang).Xinde Huang, Yunchang Xin, Yu Cao, Guangjie Huang, Wei Li. A quantitative study on planar mechanical anisotropy of a Mg-2Zn-1Ca alloy[J]. J. Mater. Sci. Technol., 2022, 109: 30-48.
Alloys | Loading direction | Yield strength (MPa) | Refs. |
---|---|---|---|
Mg-2Zn-1.2Ca (Rolling) | Tension // RD | 111 | [ |
Tension // TD | 84 | ||
Mg-2Zn-1.2Ca (Cross-rolling) | Tension // RD | 109 | [ |
Tension // TD | 86 | ||
Mg-1.98Zn-1.93Gd (Rolling) | Tension // RD | 112 | [ |
Tension // TD | 82 | ||
Mg-1.98Zn-1.93Gd (Cross-rolling) | Tension // RD | 92 | [ |
Tension // TD | 88 | ||
Mg-2Zn-2Gd (Rolling) | Tension // RD | 114 | [ |
Tension // TD | 83 | ||
Mg-2Zn-2Gd (Cross-rolling) | Tension // RD | 98 | [ |
Tension // TD | 95 | ||
Mg-0.3Zn-0.1Ca (Rolling) | Tension // RD | 92.5 | [ |
Tension // TD | 61 | ||
Mg-3Al-1Zn-3Li (Extrusion) | Tension // ED | 177.6 | [ |
Tension // TD | 108.3 | ||
Mg-7.6Gd-2.46Y (Extrusion) | Tension // ED | 157 | [ |
Tension // TD | 174 | ||
Mg-0.5Zn-0.2Ca-0.2Ce (Extrusion) | Tension // ED | 83.9 | [ |
Tension // TD | 118.3 | ||
Mg-4.2Y-2.3Nd-0.6Zr (Rolling) | Tension // RD | 419.9 | [ |
Tension // TD | 120 | ||
Mg-4.2Y-2.3Nd-0.6Zr (Cross-Rolling) | Tension // RD | 397 | [ |
Tension // TD | 152.3 | ||
Mg-5.5Gd-4.4Y-1.1Zn-0.5Zr (Rolling) | Tension // RD | 281 | [ |
Tension // TD | 213 | ||
Mg-1.1Zn-0.76Y-0.56Zr (Rolling, LRR) | Tension // RD | 152 | [ |
Tension // TD | 131 | ||
Mg-1.1Zn-0.76Y-0.56Zr (Rolling, FHRR) | Tension // RD | 136 | [ |
Tension // TD | 129 | ||
Mg-0.64Zn-0.41Sn-0.65Y (Extrusion) | Tension // ED | 188.4 | [ |
Tension // TD | 124.3 | ||
Mg-2Gd-3 Zn (Extrusion) | Tension // ED | 172 | [ |
Tension // TD | 121 | ||
Mg-5.6Zn-0.2Ca-0.1Al-0.1Mn (Rolling + T5) | Tension // RD | 264 | [ |
Tension // TD | 209 |
Table 1. Recent reported tensile yield strength along rolling direction (RD) or extrusion direction (ED) and transverse direction (TD) in RE/Ca containing Mg alloys sheets with inclined off-basal texture.
Alloys | Loading direction | Yield strength (MPa) | Refs. |
---|---|---|---|
Mg-2Zn-1.2Ca (Rolling) | Tension // RD | 111 | [ |
Tension // TD | 84 | ||
Mg-2Zn-1.2Ca (Cross-rolling) | Tension // RD | 109 | [ |
Tension // TD | 86 | ||
Mg-1.98Zn-1.93Gd (Rolling) | Tension // RD | 112 | [ |
Tension // TD | 82 | ||
Mg-1.98Zn-1.93Gd (Cross-rolling) | Tension // RD | 92 | [ |
Tension // TD | 88 | ||
Mg-2Zn-2Gd (Rolling) | Tension // RD | 114 | [ |
Tension // TD | 83 | ||
Mg-2Zn-2Gd (Cross-rolling) | Tension // RD | 98 | [ |
Tension // TD | 95 | ||
Mg-0.3Zn-0.1Ca (Rolling) | Tension // RD | 92.5 | [ |
Tension // TD | 61 | ||
Mg-3Al-1Zn-3Li (Extrusion) | Tension // ED | 177.6 | [ |
Tension // TD | 108.3 | ||
Mg-7.6Gd-2.46Y (Extrusion) | Tension // ED | 157 | [ |
Tension // TD | 174 | ||
Mg-0.5Zn-0.2Ca-0.2Ce (Extrusion) | Tension // ED | 83.9 | [ |
Tension // TD | 118.3 | ||
Mg-4.2Y-2.3Nd-0.6Zr (Rolling) | Tension // RD | 419.9 | [ |
Tension // TD | 120 | ||
Mg-4.2Y-2.3Nd-0.6Zr (Cross-Rolling) | Tension // RD | 397 | [ |
Tension // TD | 152.3 | ||
Mg-5.5Gd-4.4Y-1.1Zn-0.5Zr (Rolling) | Tension // RD | 281 | [ |
Tension // TD | 213 | ||
Mg-1.1Zn-0.76Y-0.56Zr (Rolling, LRR) | Tension // RD | 152 | [ |
Tension // TD | 131 | ||
Mg-1.1Zn-0.76Y-0.56Zr (Rolling, FHRR) | Tension // RD | 136 | [ |
Tension // TD | 129 | ||
Mg-0.64Zn-0.41Sn-0.65Y (Extrusion) | Tension // ED | 188.4 | [ |
Tension // TD | 124.3 | ||
Mg-2Gd-3 Zn (Extrusion) | Tension // ED | 172 | [ |
Tension // TD | 121 | ||
Mg-5.6Zn-0.2Ca-0.1Al-0.1Mn (Rolling + T5) | Tension // RD | 264 | [ |
Tension // TD | 209 |
Fig. 1. EBSD inverse pole figures with respect to ND, corresponding (0002) pole figures and inverse pole figures along RD of the (a) UR-300 °C, (b) UR-350 °C, (c) UR-400 °C and (d) CR-350 °C samples.
Fig. 2. (a-1) Schematic illustration of grain orientation in macroscopic sample basis and texture components classification based on the distribution of (a-2) c-axis in the rolling plane and (a-3) a-axis to RD. (b) Grain number fraction of different texture components for the present four samples. Distribution of tilt angle of basal poles (ψ angle) in each BR and BT texture component for (c) UR-300 °C, (d) UR-350 °C, (e) UR-400 °C and (f) CR-350 °C samples.
Fig. 3. Tensile true stress vs. true strain curves of (a) UR-300 °C, (b) UR-350 °C and (c) UR-400 °C samples, and (d) corresponding work hardening rate, $\text{d}\sigma /\text{d}\varepsilon $. The abrupt slope changes in UR-400 °C sample are due to an intermediate pause of loading to remove the mechanical extensometer, which leads to an additional hardening during reloading.
Sample | Tension direction | Yield strength (MPa) | Planar yield difference along RD and TD (MPa) | Ultimate strength (MPa) | Elongation to failure (%) |
---|---|---|---|---|---|
UR-300 °C | RD | 182 ± 5 | ∼21 | 294 ± 15 | 13 ± 5 |
TD | 161 ± 6 | 263 ± 3 | 12 ± 2 | ||
UR-350 °C | RD | 134 ± 5 | ∼29 | 222 ± 6 | 7 ± 5 |
TD | 108 ± 3 | 226 ± 5 | 9 ± 3 | ||
UR-400 °C | RD | 107 ± 2 | ∼21 | 223 ± 5 | 10 ± 2 |
TD | 86 ± 3 | 196 ± 8 | 9 ± 3 | ||
CR-350 °C | RD | 124 ± 3 | ∼2 | 217 ± 5 | 8 ± 5 |
TD | 122 ± 4 | 243 ± 3 | 13 ± 3 | ||
45° | 121 ± 3 | 240 ± 2 | 12 ± 7 |
Table 2. Mechanical properties of Mg-2Zn-1Ca alloys with varying rolling methods, annealing temperatures and test directions.
Sample | Tension direction | Yield strength (MPa) | Planar yield difference along RD and TD (MPa) | Ultimate strength (MPa) | Elongation to failure (%) |
---|---|---|---|---|---|
UR-300 °C | RD | 182 ± 5 | ∼21 | 294 ± 15 | 13 ± 5 |
TD | 161 ± 6 | 263 ± 3 | 12 ± 2 | ||
UR-350 °C | RD | 134 ± 5 | ∼29 | 222 ± 6 | 7 ± 5 |
TD | 108 ± 3 | 226 ± 5 | 9 ± 3 | ||
UR-400 °C | RD | 107 ± 2 | ∼21 | 223 ± 5 | 10 ± 2 |
TD | 86 ± 3 | 196 ± 8 | 9 ± 3 | ||
CR-350 °C | RD | 124 ± 3 | ∼2 | 217 ± 5 | 8 ± 5 |
TD | 122 ± 4 | 243 ± 3 | 13 ± 3 | ||
45° | 121 ± 3 | 240 ± 2 | 12 ± 7 |
Fig. 4. (a) Tensile true stress vs. true strain curves of CR-350 °C sample showing the reduced in-plane yield anisotropy, and (b) corresponding strain hardening rate when loaded along RD, TD and 45° to RD.
Fig. 5. Microstructure of UR-350 °C sample after TD-tensioned to true strain of 1.0%. (a) EBSD Euler mapping, (b) misorientation profile and distribution of rotation axis with rotation angle ranging from 80° to 90° The inset table lists six extension twin variants characterized by rotation axis. (c) SF analysis of three representative twined grains. (d) Bright field TEM micrograph.
Fig. 6. XRD analysis and dislocation density calculation of the UR-350 °C sample after RD-tension and TD-tension at 1.0%. (a) The measured diffraction profile, (b) modified Williamson-Hall plot, quadratic relation of (ΔK-α)2/K2 as a function of χ, and frequency distribution of possible fractions of different dislocation slip systems in (c) RD-tension and (d) TD-tension. (e) Modified Williamson-Hall plot, linear relation of ΔK as a function of ${{K}^{2}}\overline{{{C}_{hk.l}}{{b}^{2}}}$. (f) Dislocation density of basal <a>, prismatic <a> and screw <a> dislocations for RD-tensioned and TD-tensioned samples (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 7. (a) Variations of yield stress vs. grain size-1/2 during tension along RD and TD for UR-rolled samples. (b) Schematic diagram of slip/twining system characterized by normal of slip/twining plane (${\overset{\scriptscriptstyle\rightharpoonup}{n}}$) and slip/twin shear direction (${\overset{\scriptscriptstyle\rightharpoonup}{b}}$) in sample basis. (c) Schematic diagram of deformation mode transfer between two adjacent grains.
Mode | Basal (B) | Prismatic (Pr) | Pyramidal I (PyI) | Pyramidal II (PyII) | {10-12} twin (ET) | {10-11} twin (CT) |
---|---|---|---|---|---|---|
CRSS (MPa) | 27 | 46 | 117 | 96 | 15 | 153 |
Table 3. The critical resolved shear stress of different deformation modes used for calculation of CRSS/SF ratio.
Mode | Basal (B) | Prismatic (Pr) | Pyramidal I (PyI) | Pyramidal II (PyII) | {10-12} twin (ET) | {10-11} twin (CT) |
---|---|---|---|---|---|---|
CRSS (MPa) | 27 | 46 | 117 | 96 | 15 | 153 |
Fig. 8. Maps showing favored deformation modes of each grain for the sample annealed at (a, b) 300 °C, (c, d) 350 °C and (e, f) 400 °C when tension along (a, c, e) RD and (b, d, f) TD. The double-sided arrow refers to tension direction.
Empty Cell | Tensile direction | Basal | Prismatic | PyramidalI | PytamidalII | {10-12} twin | {10-11}twin |
---|---|---|---|---|---|---|---|
300 °C | RD | 56.5% | 40.4% | 0 | 0 | 3.1% | 0 |
TD | 58.6% | 25.8% | 0 | 0 | 15.6% | 0 | |
350 °C | RD | 59.2% | 37.1% | 0 | 0 | 3.7% | 0 |
TD | 59.0% | 22.7% | 0 | 0 | 18.3% | 0 | |
400 °C | RD | 57.9% | 38.1% | 0 | 0 | 4.0% | 0 |
TD | 58.9% | 22.6% | 0 | 0 | 18.5% | 0 |
Table 4. Number fraction of grains favoring basal, prismatic, pyramidal I, II slips, extension and contraction twinning during tension along RD and TD.
Empty Cell | Tensile direction | Basal | Prismatic | PyramidalI | PytamidalII | {10-12} twin | {10-11}twin |
---|---|---|---|---|---|---|---|
300 °C | RD | 56.5% | 40.4% | 0 | 0 | 3.1% | 0 |
TD | 58.6% | 25.8% | 0 | 0 | 15.6% | 0 | |
350 °C | RD | 59.2% | 37.1% | 0 | 0 | 3.7% | 0 |
TD | 59.0% | 22.7% | 0 | 0 | 18.3% | 0 | |
400 °C | RD | 57.9% | 38.1% | 0 | 0 | 4.0% | 0 |
TD | 58.9% | 22.6% | 0 | 0 | 18.5% | 0 |
Fig. 9. Distribution of CRSS/SF ratio for all grains, and for grains favoring basal slip (CRSS/SF)B, grains favoring prismatic slip (CRSS/SF)Pr, grains favoring extension twining (CRSS/SF)ET: (a) UR-300 °C, (b) UR-350 °C and (c) UR-400 °C. The superscript RD/TD refers to tension direction.
Fig. 10. Grain boundaries maps showing adjacent grain pairs with varying favored deformation modes in typical regions for the sample annealed at (a, b) 300 °C, (c, d) 350 °C and (e, f) 400 °C when tension along (a, c, e) RD and (b, d, f) TD. The double-sided arrow refers to tension direction.
Empty Cell | B-B | B-Pr | B-ET | Pr-Pr | Pr-ET | ET-ET |
---|---|---|---|---|---|---|
300 °C RD | 3657 (31.23%) | 5482 (46.81%) | 359 (3.07%) | 1960 (16.74%) | 244 (2.08%) | 8 (0.07%) |
300 °C TD | 4126 (35.24%) | 3551 (30.32%) | 2089 (17.84%) | 682 (5.82%) | 939 (8.02%) | 323 (2.76%) |
350 °C RD | 5205 (33.44%) | 6905 (44.36%) | 855 (5.49%) | 2056 (13.21%) | 514 (3.31%) | 30 (0.19%) |
350 °C TD | 5541 (35.60%) | 4195 (26.95%) | 3249 (20.87%) | 743 (4.77%) | 1313 (8.44%) | 524 (3.37%) |
400 °C RD | 905 (31.09%) | 1225 (42.08) | 210 (7.22%) | 387 (13.29%) | 172 (5.91%) | 12 (0.41%) |
400 °C TD | 996 (34.22%) | 751 (25.80%) | 657 (22.57%) | 137 (4.70%) | 262 (9.00%) | 108 (3.71%) |
Table 5. Number (fraction) of adjacent grain pairs with varying favored deformation modes during tension along RD and TD.
Empty Cell | B-B | B-Pr | B-ET | Pr-Pr | Pr-ET | ET-ET |
---|---|---|---|---|---|---|
300 °C RD | 3657 (31.23%) | 5482 (46.81%) | 359 (3.07%) | 1960 (16.74%) | 244 (2.08%) | 8 (0.07%) |
300 °C TD | 4126 (35.24%) | 3551 (30.32%) | 2089 (17.84%) | 682 (5.82%) | 939 (8.02%) | 323 (2.76%) |
350 °C RD | 5205 (33.44%) | 6905 (44.36%) | 855 (5.49%) | 2056 (13.21%) | 514 (3.31%) | 30 (0.19%) |
350 °C TD | 5541 (35.60%) | 4195 (26.95%) | 3249 (20.87%) | 743 (4.77%) | 1313 (8.44%) | 524 (3.37%) |
400 °C RD | 905 (31.09%) | 1225 (42.08) | 210 (7.22%) | 387 (13.29%) | 172 (5.91%) | 12 (0.41%) |
400 °C TD | 996 (34.22%) | 751 (25.80%) | 657 (22.57%) | 137 (4.70%) | 262 (9.00%) | 108 (3.71%) |
Fig. 11. Distribution of ∆Stress for all adjacent grain pairs, and B-B, B-Pr, B-ET, Pr-Pr, Pr-ET and ET-ET grain pairs in UR-rolled samples annealed at (a) 300 °C, (b) 350 °C and (c) 400 °C. The superscript RD/TD refers to tension direction, while the subscript refers to specific grain pairs.
Fig. 12. Distribution of ${m}'$ for all adjacent grain pairs, and B-B, B-Pr, B-ET, Pr-Pr, Pr-ET and ET-ET grain pairs in UR-rolled samples annealed at (a) 300 °C, (b) 350 °C and (c) 400 °C. The superscript RD/TD refers to tension direction, while the subscript refers to specific grain pairs.
Fig. 13. Distribution of (a) CRSS/SF ratio, (b) ∆Stress and (c) ${m}'$ during RD and TD tension of the CR-350 °C sample. The superscript RD/TD refers to tension direction.
Fig. 14. (a-1) Average CRSS/SF ratio when tension along RD and (a-2) average |Δ(CRSS/SF)| when tension along RD and TD as a function of distribution of basal poles in (0002) PF. Prismatic orientation was defined to be evenly distributed and the average CRSS/SF was calculated in this case. Grains with |Δ(CRSS/SF)| ≤ 15 MPa in (b) UR-300 °C, (c) UR-350 °C, (d) UR-400 °C and (e) CR-350 °C samples.
Fig. 16. Variations of |Δ(CRSS/SF)|, ∆Stress and m′ as a function of number fraction of (a, b) BR component with the same weight of PR/PT components, and (c, d) PR texture component with of the same weight of BR/BT components.
Fig. 17. Microstructures with (a-d) varying max. ψ angles in BR/BT texture component but same number fraction of BR/BT and PR/PT component, and (e, f) with the same max. ψ angle in BR/BT texture component but different fractions of BR/BT components.
Fig. 18. Variations of |Δ(CRSS/SF)|, ΔStress and m′ as a function of maximum ψ angles in microstructures with 50%/50% of BR/BT and PR/PT texture components.
[1] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[2] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[3] |
C. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q. Xiao, Q. Li, J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
[4] |
B. Pourbahari, H. Mirzadeh, M. Emamy, J. Mater. Eng. Perform. 27 (2018) 1327-1333.
DOI URL |
[5] |
Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mater. Trans. A 31 (2000) 2895-2906.
DOI URL |
[6] |
S.M. Masoudpanah, R. Mahmudi, Mater. Sci. Eng. A 526 (2009) 22-30.
DOI URL |
[7] |
Z.M. Hua, B.Y. Wang, C. Wang, C.Y. Ma, P.K. Ma, Z.P. Guan, Y.J. Li, J.S. Li, H.Y. Wang, J. Alloy. Compd. 855 (2021) 157317.
DOI URL |
[8] |
L.Q. Zhao, C. Wang, J.C. Chen, H. Ning, Z.Z. Yang, J. Xu, H.Y. Wang, J. Alloy. Compd. 849 (2020) 156640.
DOI URL |
[9] |
G. Zhu, L. Wang, H. Zhou, J. Wang, Y. Shen, P. Tu, H. Zhu, W. Liu, P. Jin, X. Zeng, Int. J. Plast. 120 (2019) 164-179.
DOI URL |
[10] |
M.Z. Bian, T.T. Sasaki, T. Nakata, S. Kamado, K. Hono, Mater. Sci. Eng. A 730 (2018) 147-154.
DOI URL |
[11] |
S. Pan, X. Huang, Y. Xin, G. Huang, Q. Li, C. Tan, Q. Liu, Mater. Sci. Eng. A 731 (2018) 288-295.
DOI URL |
[12] |
Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105 (2016) 479-494.
DOI URL |
[13] |
S. Pan, Y. Xin, G. Huang, Q. Li, F. Guo, Q. Liu, Mater. Sci. Eng. A 653 (2016) 93-98.
DOI URL |
[14] |
Q. Li, G.J. Huang, X.D. Huang, S.W. Pan, C.L. Tan, Q. Liu, J. Magnes. Alloy. 5 (2017) 166-172.
DOI URL |
[15] | W.X. Wu, L. Jin, Z.Y. Zhang, W.J. Ding, J. Dong, J. Alloy. Compd. 849 (2014). |
[16] |
L.Y. Zhao, H. Yan, R.S. Chen, E.H. Han, Mater. Charact. 150 (2019) 252-266.
DOI |
[17] |
I. Basu, T. Al-Samman, Acta Mater. 67 (2014) 116-133.
DOI URL |
[18] |
L.Y. Zhao, H. Yan, R.S. Chen, E.H. Han, Scr. Mater. 188 (2020) 200-205.
DOI URL |
[19] |
A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, H. El Kadiri, Acta Mater. 138 (2017) 27-41.
DOI URL |
[20] |
D.W. Kim, B.C. Suh, M.S. Shim, J.H. Bae, D.H. Kim, N.J. Kim, Metall. Mater. Trans. A 44 (2013) 2950-2961.
DOI URL |
[21] |
R.K. Sabat, P.K. Samal, M.S. Ahamed, Mater. Sci. Eng. A 715 (2018) 348-358.
DOI URL |
[22] |
W.G. Feather, S. Ghorbanpour, D.J. Savage, M. Ardeljan, M. Jahedi, B.A. McWilliams, N. Gupta, C. Xiang, S.C. Vogel, M. Knezevic, Int. J. Plast. 120 (2019) 180-204.
DOI URL |
[23] |
S.A. Habib, J.T. Lloyd, C.S. Meredith, A.S. Khan, S.E. Schoenfeld, Int. J. Plast. 122 (2019) 285-318.
DOI URL |
[24] |
B.Q. Shi, Y.H. Xiao, X.L. Shang, Y.Q. Cheng, H. Yan, Y. Dong, A.F. Chen, X.L. Fu, R.S. Chen, W. Ke, Mater. Sci. Eng. A 746 (2019) 115-126.
DOI URL |
[25] |
Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, J.F. Nie, Mater. Sci. Eng. A 674 (2016) 459-471.
DOI URL |
[26] |
J. He, B. Jiang, X. Yu, J. Xu, Z. Jiang, B. Liu, F. Pan, J. Alloy. Compd. 698 (2017) 771-785.
DOI URL |
[27] |
J. Sun, L. Jin, S. Dong, J. Dong, Z. Zhang, F. Wang, W. Ding, A.A. Luo, Mater. Des. 122 (2017) 164-171.
DOI URL |
[28] |
G. Wang, G. Huang, X. Chen, Q. Deng, A. Tang, B. Jiang, F. Pan, Mater. Sci. Eng. A 705 (2017) 46-54.
DOI URL |
[29] |
J. Shao, Z. Chen, T. Chen, R. Wang, Y. Liu, C. Liu, Mater. Sci. Eng. A 731 (2018) 479-486.
DOI URL |
[30] |
Q. Wang, B. Jiang, A. Tang, C. He, D. Zhang, J. Song, T. Yang, G. Huang, F. Pan, Mater. Sci. Eng. A 746 (2019) 259-275.
DOI URL |
[31] |
M.M. Hoseini-Athar, R. Mahmudi, R.P. Babu, P. Hedström, Mater. Sci. Eng. A 772 (2020) 138833.
DOI URL |
[32] |
T. Nakata, C. Xu, S. Kamado, Mater. Sci. Eng. A 776 (2020) 139018.
DOI URL |
[33] | E.O. Hall, Proc. Phys. Soc. Sect. B 64 (1951) 747-753. |
[34] | N.J. Petch, J. Iron Steel Inst. 174 (1953) 25-28. |
[35] |
S.F. Chen, H.W. Song, S.H. Zhang, M. Cheng, C. Zheng, M.G. Lee, Scr. Mater. 167 (2019) 51-55.
DOI URL |
[36] |
R. Xin, Z. Liu, Y. Sun, H. Wang, C. Guo, W. Ren, Q. Liu, Int. J. Plast. 123 (2019) 208-223.
DOI URL |
[37] |
J. Sun, L. Jin, J. Dong, F. Wang, S. Dong, W. Ding, A.A. Luo, Int. J. Plast. 123 (2019) 121-132.
DOI URL |
[38] |
D. Guan, B. Wynne, J. Gao, Y. Huang, W.M. Rainforth, Acta Mater. 170 (2019) 1-14.
DOI URL |
[39] |
B. Zhou, L. Wang, P. Jin, H. Jia, H.J. Roven, X. Zeng, Y. Li, Int. J. Plast. 128 (2020) 102669.
DOI URL |
[40] | Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W. Curtin, Science 359 (2018) 447-452. |
[41] |
M. Yuasa, M. Hayashi, M. Mabuchi, Y. Chino, Acta Mater. 65 (2014) 207-214.
DOI URL |
[42] |
M. Zhou, X. Huang, Y. Morisada, H. Fujii, Y. Chino, Mater. Sci. Eng. A 769 (2020) 138474.
DOI URL |
[43] |
H. Yu, Y. Xin, M. Wang, Q. Liu, J. Mater. Sci. Technol. 34 (2018) 248-256.
DOI URL |
[44] |
H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, Q. Liu, Acta Mater. 128 (2017) 313-326.
DOI URL |
[45] | I. Astm, ASTM E8/E8M-16a: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, USA, 2016. |
[46] |
T. Ungár, Mater. Sci. Forum 278-281 (1998) 151-157.
DOI URL |
[47] |
R. Zheng, J.P. Du, S. Gao, H. Somekawa, S. Ogata, N. Tsuji, Acta Mater. 198 (2020) 35-46.
DOI URL |
[48] |
X. Luo, Z. Feng, T. Yu, J. Luo, T. Huang, G. Wu, N. Hansen, X. Huang, Acta Mater. 183 (2020) 398-407.
DOI URL |
[49] |
F. Kabirian, A.S. Khan, T. Gnäupel-Herlod, Int. J. Plast. 68 (2015) 1-20.
DOI URL |
[50] |
S. Agnew, M. Yoo, C. Tome, Acta Mater. 49 (2001) 4277-4289.
DOI URL |
[51] |
M. Yuasa, M. Hayashi, M. Mabuchi, Y. Chino, J. Phys. Condens. Matter 26 (2013) 015003.
DOI URL |
[52] |
B. Li, E. Ma, Phys. Rev. Lett. 103 (2009) 035503.
DOI URL |
[53] |
J. Luo, W.W. Hu, Q.Q. Jin, H. Yan, R.S. Chen, Scr. Mater. 127 (2017) 146-150.
DOI URL |
[54] |
I.V. Ivanov, D.V. Lazurenko, A. Stark, F. Pyczak, A. Thömmes, I.A. Bataev, Met. Mater. Int. 26 (2019) 83-93.
DOI URL |
[55] |
I. Dragomir, T. Ungár, J. Appl. Crystallogr. 35 (2002) 556-564.
DOI URL |
[56] |
A. Borbély, J. Dragomir-Cernatescu, G. Ribárik, T. Ungár, J. Appl. Crystallogr. 36 (2003) 160-162.
DOI URL |
[57] |
M. Wang, X.Y. Xu, H.Y. Wang, L.H. He, M.X. Huang, Acta Mater. 201 (2020) 102-113.
DOI URL |
[58] |
T. Ungár, O. Castelnau, G. Ribárik, M. Drakopoulos, J.L. Béchade, T. Chauveau, A. Snigirev, I. Snigireva, C. Schroer, B. Bacroix, Acta Mater. 55 (2007) 1117-1127.
DOI URL |
[59] |
A. Chapuis, Z.Q. Wang, Q. Liu, Mater. Sci. Eng. A 655 (2016) 244-250.
DOI URL |
[60] |
A. Chapuis, J.H. Driver, Acta Mater. 59 (2011) 1986-1994.
DOI URL |
[61] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[62] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[63] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[64] |
A. Datta, U. Waghmare, U. Ramamurty, Acta Mater. 56 (2008) 2531-2539.
DOI URL |
[65] |
Z. Wu, W.A. Curtin, Nature 526 (2015) 62-67.
DOI URL |
[66] |
Z. Wu, W.A. Curtin, Scr. Mater. 116 (2016) 104-107.
DOI URL |
[67] |
B.I. Rodgers, P.B. Prangnell, Acta Mater. 108 (2016) 55-67.
DOI URL |
[68] |
I.V. Ivanov, D.V. Lazurenko, A. Stark, F. Pyczak, A. Thömmes, I.A. Bataev, Met. Mater. Int. 26 (2019) 83-93.
DOI URL |
[69] | M. Wilkens, in: Fundamental Aspects of Dislocation Theory, 2, NBS. Spec, 1970, pp. 1191-1193. |
[70] |
G. Williamson, W. Hall, Acta Mater. 1 (1953) 22-31.
DOI URL |
[71] |
S. Takaki, T. Masumura, T. Tsuchiyama, ISIJ Int. 58 (2018) 2354-2356.
DOI URL |
[72] |
A.H. Cottrell, Prog. Met. Phys. 4 (1953) 205-264.
DOI URL |
[73] |
A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, S.R. Agnew, Mater. Sci. Eng. A 486 (2008) 545-555.
DOI URL |
[74] |
G. Liu, J. Zhang, G. Xi, R. Zuo, S. Liu, Acta Mater. 141 (2017) 1-9.
DOI URL |
[75] |
F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Acta Mater. 58 (2010) 1152-1211.
DOI URL |
[76] | R.A. Lebensohn, C.N. Tomé, Acta Mater. 41 (1993) 2611-2624. |
[77] |
H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, C.N. Tomé, Int. J. Solids Struct. 47 (2010) 2905-2917.
DOI URL |
[78] |
X. Lou, M. Li, R. Boger, S. Agnew, R. Wagoner, Int. J. Plast. 23 (2007) 44-86.
DOI URL |
[79] |
G. Proust, C.N. Tomé, A. Jain, S.R. Agnew, Int. J. Plast. 25 (2009) 861-880.
DOI URL |
[80] |
W. Hutchinson, M. Barnett, Scr. Mater. 63 (2010) 737-740.
DOI URL |
[81] |
S.R. Agnew, Ö. Duygulu, Int. J. Plast. 21 (2005) 1161-1193.
DOI URL |
[82] | E. Hall, Proc. Phys. Soc. Sect. B 64 (1951) 742. |
[83] | E. Hall, Proc. Phys. Soc. Sect. B 64 (1951) 747. |
[84] |
W. Yuan, S. Panigrahi, J.Q. Su, R. Mishra, Scr. Mater. 65 (2011) 994-997.
DOI URL |
[85] |
Y. Wang, H. Choo, Acta Mater. 81 (2014) 83-97.
DOI URL |
[86] |
Y. Qiao, X. Wang, Z. Liu, E. Wang, Mater. Sci. Eng. A 578 (2013) 240-246.
DOI URL |
[87] |
H. Somekawa, T. Mukai, Mater. Sci. Eng. A 561 (2013) 378-385.
DOI URL |
[88] |
Y. Wang, C. Chang, C. Lee, H. Lin, J. Huang, Scr. Mater. 55 (2006) 637-640.
DOI URL |
[89] |
J. Luster, M. Morris, Metall. Mater. Trans. A 26 (1995) 1745-1756.
DOI URL |
[90] |
J. Wyrzykowski, M. Grabski, Philos. Mag. A 53 (1986) 505-520.
DOI URL |
[91] | Y. Xu, X.H. Fan, K.G. Liu, L. Shi, B. Xu, F.M. Wang, J.P. Lin, Adv. Mater. Res., Trans. Tech. Publ. 706 (2013) 391-394. |
[92] |
Z. Zeng, M. Zhou, P. Lynch, F. Mompiou, Q. Gu, M. Esmaily, Y. Yan, Y. Qiu, S. Xu, H. Fujii, C. Davies, J.F. Nie, N. Birbilis, Acta Mater. 206 (2021) 116648.
DOI URL |
[93] |
Z.R. Zeng, Y.M. Zhu, R.L. Liu, S.W. Xu, C.H.J. Davies, J.F. Nie, N. Birbilis, Acta Mater. 160 (2018) 97-108.
DOI URL |
[94] |
Z. Zeng, J.F. Nie, S.W. Xu, J. Davies, N. Birbilis, Nat. Commun. 8 (2017) 972-977.
DOI URL |
[1] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[2] | Jinyong Zhang, Bingnan Qian, Wang Lin, Ping Zhang, Yijin Wu, Yangyang Fu, Yu Fan, Zheng Chen, Jun Cheng, Jinshan Li, Yuan Wu, Yu Wang, Fan Sun. Compressive deformation-induced hierarchical microstructure in a TWIP β Ti-alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 130-137. |
[3] | B.Q. Shi, L.Y. Zhao, X.L. Shang, B.H. Nie, D.C. Chen, C.Q. Li, Y.Q. Cheng. Reduction effect of final-pass heavy reduction rolling on the texture development, tensile property and stretch formability of ZWK100 alloy plates [J]. J. Mater. Sci. Technol., 2022, 111(0): 211-223. |
[4] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[5] | Wenjie Lu, Xian Luo, Dou Ning, Miao Wang, Chao Yang, Miaoquan Li, Yanqing Yang, Pengtao Li, Bin Huang. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 195-201. |
[6] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[7] | Qiang Liu, Jiangfeng Song, Yuanding Huang, Bin Jiang, Biquan Xiao, Fusheng Pan. Comparison of edge cracking and tensile cracking in in-situ deformation at 150 °C of Mg-2Zn-1.5Mn alloy sheet [J]. J. Mater. Sci. Technol., 2022, 112(0): 24-35. |
[8] | S.J. Tsianikas, Y. Chen, J. Jeong, S. Zhang, Z. Xie. Forging strength-ductility unity in a high entropy steel [J]. J. Mater. Sci. Technol., 2022, 113(0): 158-165. |
[9] | Mengyuan He, Nan Jia, Xiaochun Liu, Yongfeng Shen, Liang Zuo. Abnormal chemical composition fluctuations in multi-principal-element alloys induced by simple cyclic deformation [J]. J. Mater. Sci. Technol., 2022, 113(0): 287-295. |
[10] | Jiangwei Wang, Anik H.M. Faisal, Xiyao Li, Youran Hong, Qi Zhu, Hongbin Bei, Ze Zhang, Scott X Mao, Christopher R. Weinberger. Discrete twinning dynamics and size-dependent dislocation-to twin transition in body-centred cubic tungsten [J]. J. Mater. Sci. Technol., 2022, 106(0): 33-40. |
[11] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
[12] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength [J]. J. Mater. Sci. Technol., 2022, 107(0): 227-242. |
[13] | Y.J. Duan, L.T. Zhang, T. Wada, H. Kato, E. Pined, D. Crespo, J.M. Pelletier, J.C. Qiao. Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery [J]. J. Mater. Sci. Technol., 2022, 107(0): 82-91. |
[14] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[15] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||