J. Mater. Sci. Technol. ›› 2022, Vol. 119: 156-166.DOI: 10.1016/j.jmst.2021.12.035
• Research Article • Previous Articles Next Articles
Qi Ana, Lujun Huanga,*(
), Qi Qianb, Yong Jiangb,*(
), Shuai Wanga, Rui Zhanga, Lin Genga, Liqin Wangc
Received:2021-11-21
Revised:2021-12-23
Accepted:2021-12-28
Published:2022-08-20
Online:2022-03-04
Contact:
Lujun Huang,Yong Jiang
About author:yjiang@csu.edu.cn (Y. Jiang).Qi An, Lujun Huang, Qi Qian, Yong Jiang, Shuai Wang, Rui Zhang, Lin Geng, Liqin Wang. Insights into in-situ TiB/dual-phase Ti alloy interface and its high load-bearing capacity[J]. J. Mater. Sci. Technol., 2022, 119: 156-166.
| Parallel zone axis | Parallel crystal plane | Fabrication method | Refs. |
|---|---|---|---|
| [010]TiB//[01 | (100)TiB//( | VAR | [ |
| [001]TiB//[01 | (010)TiB//( | ||
| [11 | (201)TiB//( | RHP | [ |
| [100]TiB//[0001]α-Ti | (001)TiB//(10 | Arc deposition | [ |
| [0 | (100)TiB//(10 | SPS | [ |
| [010]TiB//[ | (001)TiB//(110)β-Ti | ||
| [010]TiB//[11 | (001)TiB//(0001)α-Ti;(101)TiB//(0001)α-Ti;(001)TiB//(01 | Arc melting | [ |
| [010]TiB//[ | (001)TiB//(011)β-Ti |
Table 1. Interfacial orientation relationships between in-situ TiB and Ti matrix.
| Parallel zone axis | Parallel crystal plane | Fabrication method | Refs. |
|---|---|---|---|
| [010]TiB//[01 | (100)TiB//( | VAR | [ |
| [001]TiB//[01 | (010)TiB//( | ||
| [11 | (201)TiB//( | RHP | [ |
| [100]TiB//[0001]α-Ti | (001)TiB//(10 | Arc deposition | [ |
| [0 | (100)TiB//(10 | SPS | [ |
| [010]TiB//[ | (001)TiB//(110)β-Ti | ||
| [010]TiB//[11 | (001)TiB//(0001)α-Ti;(101)TiB//(0001)α-Ti;(001)TiB//(01 | Arc melting | [ |
| [010]TiB//[ | (001)TiB//(011)β-Ti |
| Al | V | Fe | Si | C | O | Ti |
|---|---|---|---|---|---|---|
| 6.420 | 4.120 | 0.180 | 0.024 | 0.013 | 0.120 | Bal. |
Table 2. Chemical compositions of Ti6Al4V alloy powder (wt.%).
| Al | V | Fe | Si | C | O | Ti |
|---|---|---|---|---|---|---|
| 6.420 | 4.120 | 0.180 | 0.024 | 0.013 | 0.120 | Bal. |
| Phase | Crystalstructure | a (Å) | b (Å) | c (Å) | B0 (GPa) | Methods | Refs. |
|---|---|---|---|---|---|---|---|
| α-Ti | hcp | 2.939 | - | 4.647 | 110 | PAW-PBE | This work |
| 2.94 | 4.66 | 111.35 | PAW-PBE | [ | |||
| 2.951 | - | 4.679 | 110 | Expt. | [ | ||
| β-Ti | bcc | 3.255 | - | - | 106.8 | PAW-PBE | This work |
| 3.250 | - | - | 98.2 | PAW-PBE | [ | ||
| - | - | - | 108 | PAW-GGA | [ | ||
| 3.310 | - | - | - | Expt. | [ | ||
| TiB | orthorhombic | 4.570 | 6.120 | 3.054 | 205.4 | PAW-PBE | This work |
| 4.559 | 6.111 | 3.051 | 201-202 | FPLAPW-GGA | [ | ||
| 4.560 | 6.120 | 3.060 | - | Expt. | [ |
Table 3. Calculated bulk lattice constants and bulk moduli in comparison with experiments.
| Phase | Crystalstructure | a (Å) | b (Å) | c (Å) | B0 (GPa) | Methods | Refs. |
|---|---|---|---|---|---|---|---|
| α-Ti | hcp | 2.939 | - | 4.647 | 110 | PAW-PBE | This work |
| 2.94 | 4.66 | 111.35 | PAW-PBE | [ | |||
| 2.951 | - | 4.679 | 110 | Expt. | [ | ||
| β-Ti | bcc | 3.255 | - | - | 106.8 | PAW-PBE | This work |
| 3.250 | - | - | 98.2 | PAW-PBE | [ | ||
| - | - | - | 108 | PAW-GGA | [ | ||
| 3.310 | - | - | - | Expt. | [ | ||
| TiB | orthorhombic | 4.570 | 6.120 | 3.054 | 205.4 | PAW-PBE | This work |
| 4.559 | 6.111 | 3.051 | 201-202 | FPLAPW-GGA | [ | ||
| 4.560 | 6.120 | 3.060 | - | Expt. | [ |
Fig. 2. Microstructures of the α-Ti/β-Ti/TiB multi-interfacial system. (a1-a4) HAADF image and the corresponding element distributions of B, Al, and V. (b1-b3) HRTEM images of the α-Ti/β-Ti, TiB/α-Ti, and TiB/β-Ti interfaces at the locations “1”, “2”, and “3” in Fig. 2(a1), respectively. (c1-c3) FFT pattern analyses to deduce the interfacial ORs in Fig. 2(b1-b3), respectively.
Fig. 3. IFFT images and interface models of TiB/β-Ti and TiB/α-Ti PBs. (a1) The identified contacted facets between TiB and β-Ti, and the constructed models of (a2) (100)TiB/($\bar{1}$21)β-Ti and (a3) ($\bar{1}$01)TiB/(2$\bar{1}$1)β-Ti interfaces; (b1) the contacted facets between TiB and α-Ti, and the interface models of (b2) (20$\bar{1}$)TiB/(0001)α-Ti and (b3) (001)TiB/(01$\bar{1}$$\bar{1}$)α-Ti, respectively.
Fig. 4. Interface formation energies of TiB/β-Ti and TiB/α-Ti PBs. (a) The interface energies of (100)TiB/($\bar{1}$21)β-Ti and ($\bar{1}$01)TiB/(2$\bar{1}$1)β-Ti with different terminations, (b) the interface energies of (20$\bar{1}$)TiB/(0001)α-Ti and (001)TiB/(01$\bar{1}$$\bar{1}$)α-Ti with different terminations.
Fig. 5. Work of separation at different locations and valence charge density distribution of modeled TiB/β-Ti and TiB/α-Ti PBs with stable interfacial terminations. (a1) “1-TiB” type (100)TiB/($\bar{1}$21)β-Ti and (a2) “1-TiB” type ($\bar{1}$01)TiB/(2$\bar{1}$1)β-Ti; (b1) “1-B” type (20$\bar{1}$)TiB/(0001)α-Ti and (b2) “1-BTi2” type (001)TiB/ (01$\bar{1}$$\bar{1}$)α-Ti.
Fig. 6. The nanoindentation results at various local zones, (a1) load curves over displacement, (a2) modulus curves over displacement, (a3) hardness curves over displacement; (b1-b3) indentation morphologies located at primary TiB, Ti6Al4V matrix, and TiB/Ti6Al4V interface, respectively.
Fig. 8. Thermodynamic driving forces of (a) β-Ti and (b) α-Ti nucleation, (b1) schematic of α-Ti nucleation site location, (b2) the enlarged plot of local zone marked in Fig. 8(b).
| Zone | a (mN/nmm) | m | S (mN/nm) | HIT (GPa) | Er (GPa) | HIT·Er-1 | HIT3·Er-2 |
|---|---|---|---|---|---|---|---|
| TiB | 0.063 | 1.36 | 0.569 | 23.81 | 255.99 | 0.093 | 0.206 |
| Ti6Al4V | 0.045 | 1.38 | 0.409 | 8.61 | 165.44 | 0.052 | 0.023 |
| Interface | 0.072 | 1.36 | 0.581 | 14.34 | 238.85 | 0.060 | 0.052 |
Table 4. The fitted constants (a, m) and estimated initial slop (S), indentation hardness (HIT), and reduced modulus (Er) based on the unloading curves in Fig. 6(a1).
| Zone | a (mN/nmm) | m | S (mN/nm) | HIT (GPa) | Er (GPa) | HIT·Er-1 | HIT3·Er-2 |
|---|---|---|---|---|---|---|---|
| TiB | 0.063 | 1.36 | 0.569 | 23.81 | 255.99 | 0.093 | 0.206 |
| Ti6Al4V | 0.045 | 1.38 | 0.409 | 8.61 | 165.44 | 0.052 | 0.023 |
| Interface | 0.072 | 1.36 | 0.581 | 14.34 | 238.85 | 0.060 | 0.052 |
| [1] | C. Leyens, M. Peters, Titanium and Titanium Alloys:Fundamentals and Appli- cations, Wiley-VCH Verlag GmbH, Weinheim, 2003. |
| [2] | W. Gerhard, R.R. Boyer, E.W. Collings, Materials Properties Handbook:Titanium Alloys, ASM International, 1994. |
| [3] |
D. Banerjee, J.C. Williams, Acta Mater. 61 (2013) 844-879.
DOI URL |
| [4] |
K. Lu, Science 328 (2010) 319-320.
DOI PMID |
| [5] |
G. Singh, U. Ramamurty, Prog. Mater. Sci. 111 (2020) 100653.
DOI URL |
| [6] |
Y.Q. Xu, Y. Fu, J. Li, W.L. Xiao, X.Q. Zhao, C.L. Ma, J. Mater. Sci. Technol. 93 (2021) 147-156.
DOI URL |
| [7] |
S. Zherebtsov, M. Ozerov, E. Povolyaeva, V. Sokolovsky, N. Stepanov, D. Moskovskikh, G. Salishchev, Metals 10 (2019) 40.
DOI URL |
| [8] | M.S. Ozerov, M.V. Klimova, N.D. Stepanov, S.V. Zherebtsov, Mater. Chem. Phys. 38 (2018) 54-63. |
| [9] | L.J. Huang, Q. An, L. Geng, S. Wang, S. Jiang, X.P. Cui, R. Zhang, F.B. Sun, Y. Jiao, X. Chen, C.Y. Wang, Adv. Mater. 33 (2021) 2000688. |
| [10] |
M.S.K.K.Y. Nartu, S.A. Mantri, M.V. Pantawane, Y.H. Ho, B. McWilliams, K. Cho, N.B. Dahotre, R. Banerjee, Scr. Mater. 183 (2020) 28-32.
DOI URL |
| [11] |
H. Ding, X.P. Cui, N.N. Gao, Y. Sun, Y.Y. Zhang, L.J. Huang, L. Geng, J. Mater. Sci. Technol. 62 (2021) 221-233.
DOI |
| [12] |
Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li, J. Mater. Sci. Technol. 96 (2022) 85-93.
DOI |
| [13] |
O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, M.N. Rad, S.V. Prikhodko, J. Mater. Process. Tech. 269 (2019) 172-181.
DOI |
| [14] |
H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. B ӧnisch, A.S. Volegov, M. Calin, J. Eckert, M.S. Dargusch, Mater. Sci. Eng. A 688 (2017) 20-26.
DOI URL |
| [15] | M.Y. Koo, J.S. Park, M.K. Park, K.T. Kim, S.H. Hong, Scr. Mater. 66 (2012) 4 87-4 90. |
| [16] |
C. Cai, B. Song, C.L. Qiu, L.F. Li, P.J. Xue, Q.J. Wei, J.X. Zhou, H. Nan, H.X. Chen, Y.S. Shi, J. Alloy. Compd. 710 (2017) 364-374.
DOI URL |
| [17] |
K. Panda, K. Chandran, Acta Mater. 54 (2006) 1641-1657.
DOI URL |
| [18] |
K. Morsi, V.V. Patel, J. Mater. Sci. 42 (2007) 2037-2047.
DOI URL |
| [19] |
J.W. Le, Y.F. Han, P.K. Qiu, S.P. Li, G.F. Huang, J.W. Mao, W.J. Lu, J. Mater. Sci. Technol. 110 (2022) 1-13.
DOI URL |
| [20] |
V.M. Imayev, R.A. Gaisin, R.M. Imayev, Mater. Sci. Eng. A 641 (2015) 71-83.
DOI URL |
| [21] |
M. Ozerov, N. Stepanov, A. Kolesnikov, V. Sokolovsky, S. Zherebtsov, Mater. Lett. 187 (2017) 28-31.
DOI URL |
| [22] |
Y. Jiao, L.J. Huang, L. Geng, J. Alloy. Compd. 767 (2018) 1196-1215.
DOI URL |
| [23] |
L.J. Huang, L. Geng, H.X. Peng, Prog. Mater. Sci. 71 (2015) 93-168.
DOI URL |
| [24] |
W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori, Scr. Mater. 44 (2001) 1069-1075.
DOI URL |
| [25] |
Y. Bao, L.J. Huang, Q. An, S. Jiang, R. Zhang, L. Geng, X.X. Ma, J. Mater. Process. Technol. 274 (2019) 116298.
DOI URL |
| [26] |
Y. Bao, L.J. Huang, S. Jiang, R. Zhang, Q. An, C.W. Zhang, L. Geng, X.X. Ma, J. Mater. Sci. Technol. 83 (2021) 145-160.
DOI URL |
| [27] |
Y.S. Tian, Q.Y. Zhang, D.Y. Wang, C.Z. Chen, Cryst. Growth Des. 8 (2008) 700-703.
DOI URL |
| [28] |
S.L. Wei, L.J. Huang, X.T. Li, Y. Jiao, W. Ren, L. Geng, Metall. Mater. Trans. A 50 (2019) 3629-3645.
DOI URL |
| [29] |
H.B. Feng, Y. Zhou, D.C. Jia, Q.C. Meng, J.C. Rao, Cryst. Growth Des. 6 (2006) 1626-1630.
DOI URL |
| [30] |
P. Nandwana, S. Nag, D. Hill, J. Tiley, H.L. Fraser, R. Banerjee, Scr. Mater. 66 (2012) 598-601.
DOI URL |
| [31] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
| [32] |
Y. Li, B. Hu, B. Liu, A.M. Nie, Q.F. Gu, J.F. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
| [33] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
| [34] |
P. Nandwana, N. Gupta, S.G. Srinivasan, R. Banerjee, Comput. Mater. Sci. 150 (2018) 197-201.
DOI URL |
| [35] |
W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori, J. Alloy. Compd. 327 (2001) 240-247.
DOI URL |
| [36] |
M. Ozerov, M. Klimova, A. Vyazmin, N. Stepanov, S. Zherebtsov, Mater. Lett. 186 (2017) 168-170.
DOI URL |
| [37] |
R. Fan, Q.W. Zheng, Y. Liu, T.X. Fan, J. Appl. Phys. 126 (2019) 035304.
DOI URL |
| [38] |
Q. An, L.J. Huang, Y. Jiao, Y. Bao, B. Zhong, L. Geng, Mater. Des. 162 (2019) 34-44.
DOI URL |
| [39] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
DOI PMID |
| [40] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
DOI URL |
| [41] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
DOI PMID |
| [42] |
D.D. Li, W.F. Wan, L.Q. Zhu, Y. Jiang, S.Q. Shao, G.Q. Yang, H.Q. Liu, D.Q. Yi, S. Cao, Q.M. Hu, Acta Mater. 151 (2018) 406-415.
DOI URL |
| [43] | J. Spreadborough, J. Christian, Proc. Phys. Soc. 74 (1959) 609. |
| [44] | C. Marker, S.L. Shang, J.C. Zhao, Z.K. Liu, Comput. Mater. Sci. 140 (2017) 121-139. |
| [45] |
O. Senkov, B. Chakoumakos, J. Jonas, F. Froes, Mater. Res. Bull. 36 (2001) 1431-1440.
DOI URL |
| [46] |
B.F. Decker, J.S. Kasper, Acta Cryst. 7 (1954) 77-80.
DOI URL |
| [47] |
W. Burgers, Physica 1 (1934) 561-586.
DOI URL |
| [48] |
S.L. Wei, G.M. Zhu, C.C. Tasan, Acta Mater. 206 (2021) 116520.
DOI URL |
| [49] |
S. Suri, G.B. Viswanathan, T. Neeraj, D.H. Hou, M.J. Mills, Acta Mater. 47 (1999) 1019-1034.
DOI URL |
| [50] |
T. Furuhara, T. Ogawa, T. Maki, Phil. Mag. Lett. 72 (1995) 175-183.
DOI URL |
| [51] |
D. Bhattacharyya, G.B. Viswanathan, R. Denkenberger, D. Furrer, H.L. Fraser, Acta Mater. 51 (2003) 4679-4691.
DOI URL |
| [52] |
D.D. Li, L.Q. Zhu, S.Q. Shao, Y. Jiang, J. Appl. Phys. 119 (2016) 225302.
DOI URL |
| [53] |
S. Zherebtsov, G. Salishchev, S.Lee Semiatin, Phil. Mag. Lett. 90 (2010) 903-914.
DOI URL |
| [54] |
M.A. Murzinova, S.V. Zherebtsov, D.N. Klimenko, S.L. Semiatin, Metall. Mater. Trans. A 52 (2021) 1689-1698.
DOI URL |
| [55] | C.A. Schuh, Mater. Today 9 (2006) 32-40. |
| [56] |
C.A. Schuh, J.K. Mason, A.C. Lund, Nat. Mater. 4 (2005) 617-621.
PMID |
| [57] |
H.L. Yu, W. Zhang, H.M. Wang, X.C. Ji, Z.Y. Song, X.Y. Li, B.S. Xu, J. Alloy. Compd. 701 (2017) 244-255.
DOI URL |
| [58] |
Q. An, L.J. Huang, S. Jiang, Y. Bao, M. Ji, R. Zhang, L. Geng, J. Alloy. Compd. 755 (2018) 29-40.
DOI URL |
| [59] |
M. Masanta, S.M. Shariff, A.Roy Choudhury, Mater. Sci. Eng. A 528 (2011) 5327-5335.
DOI URL |
| [60] |
K. Dubey, P. Ramachandrarao, Acta Metall. 32 (1984) 91-96.
DOI URL |
| [61] | E.A. Brandes, G.B. Brook, Smithells Metals Reference Book, Butterworth-Heine- mann, Oxford, 2013. |
| [62] |
K. Zhou, B. Wei, Appl. Phys. A 122 (2016) 248.
DOI URL |
| [63] |
Y. Ma, A. Addad, G. Ji, M.M. Zhang, W. Lefebvre, Z. Chen, V. Ji, Acta Mater. 185 (2020) 287-299.
DOI URL |
| [64] | W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1546-1583. |
| [65] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 19 (2004) 3-20.
DOI URL |
| [66] |
X. Chen, Z.L. Lei, Y.B. Chen, B. Han, M. Jiang, Z. Tian, J. Bi, S.B. Lin, Mater. Sci. Eng. A 756 (2019) 291-301.
DOI URL |
| [67] |
E. Pellicer, A. Varea, S. Pané, B.J. Nelson, E. Menéndez, M. Estrader, S. Suriñach, M.D. Baró, J. Nogués, J. Sort, Adv. Funct. Mater. 20 (2010) 983-991.
DOI URL |
| [68] |
Z.J. Peng, J.H. Gong, H.Z. Miao, J. Eur. Ceram. Soc. 24 (2004) 2193-2201.
DOI URL |
| [69] |
W.D. Nix, H.J. Gao, J. Mech. Phys. Solids 46 (1998) 411-425.
DOI URL |
| [70] |
Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix, G.M. Pharr, G. Feng, J. Mech. Phys. Solids 54 (2006) 1668-1686.
DOI URL |
| [71] |
A. Ruiz-Moreno, P. Hähner, Mater. Des. 145 (2018) 168-180.
DOI URL |
| [1] | Y.F. Zhao, H.H. Chen, D.D. Zhang, J.Y. Zhang, Y.Q. Wang, K. Wu, G. Liu, J. Sun. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu [J]. J. Mater. Sci. Technol., 2022, 116(0): 199-213. |
| [2] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
| [3] | Kun Wang, Zeyuan Su, Yali Chen, Heng Qi, Ting Wang, Hao Wang, Youqian Zhang, Li Cao, Qian Ye, Fobao Huang, Yu Tong, Hongqiang Wang. Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 114(0): 165-171. |
| [4] | Jiangshao Yang, Liwen Liu, Daoyi Wang, Jianming Tao, Yanming Yang, Jiaxin Li, Yingbin Lin, Zhigao Huang. Boosting K-ion kinetics by interfacial polarization induced by amorphous MoO3-x for MoSe2/MoO3-x@rGO composites [J]. J. Mater. Sci. Technol., 2022, 115(0): 232-240. |
| [5] | Eun-Ae Choi, Seung Zeon Han, Hyung Giun Kim, Jee Hyuk Ahn, Sung Hwan Lim, Sangshik Kim, Nong-Moon Hwang, Kwangho Kim, Jehyun Lee. Coherent interface driven super-plastic elongation of brittle intermetallic nano-fibers at room temperature [J]. J. Mater. Sci. Technol., 2022, 115(0): 97-102. |
| [6] | Zhuang Tang, Kai Ning, Zhiyao Fu, Ze Lian, Kangning Wu, Shoudao Huang. Significantly enhanced varistor properties of CaCu3Ti4O12 based ceramics by designing superior grain boundary: Deepening and broadening interface states [J]. J. Mater. Sci. Technol., 2022, 108(0): 82-89. |
| [7] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
| [8] | Naifang Zhang, Qiaodan Hu, Zongye Ding, Wenquan Lu, Fan Yang, Jianguo Li. 3D morphological evolution and growth mechanism of proeutectic FeAl3 phases formed at Al/Fe interface under different cooling rates [J]. J. Mater. Sci. Technol., 2022, 116(0): 83-93. |
| [9] | Yanyu Song, Duo Liu, Guobiao Jin, Haitao Zhu, Naibin Chen, Shengpeng Hu, Xiaoguo Song, Jian Cao. Fabrication of Si3N4/Cu direct-bonded heterogeneous interface assisted by laser irradiation [J]. J. Mater. Sci. Technol., 2022, 99(0): 169-177. |
| [10] | Z.Q. Chen, M.C. Li, J.S. Cao, F.C. Li, S.W. Guo, B.A. Sun, H.B. Ke, W.H. Wang. Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2022, 99(0): 178-183. |
| [11] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
| [12] | Chong Peng, Hu Tang, Changjian Geng, Pengjie Liang, Biao Wan, Yujiao Ke, Yuefeng Wang, Peng Jia, Wenfeng Peng, Lina Qiao, Kenan Li, Xiaohong Yuan, Yucheng Zhao, Mingzhi Wang. Extraordinary toughening enhancement in nonstoichiometric vanadium carbide [J]. J. Mater. Sci. Technol., 2022, 97(0): 176-181. |
| [13] | Zhong Zheng, Xuexi Zhang, Mingfang Qian, Jianchao Li, Muhammad Imran, Lin Geng. Ultra-high strength GNP/2024Al composite via thermomechanical treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 164-172. |
| [14] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
| [15] | Xiaoyang Yi, Bin Sun, Kuishan Sun, Haizhen Wang, Shangzhou Zhang, Zhiyong Gao, Xianglong Meng. Revealing the interface structure of {111} type I twin in Ti-Ni-Hf shape memory alloy composite [J]. J. Mater. Sci. Technol., 2022, 105(0): 237-241. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
