J. Mater. Sci. Technol. ›› 2022, Vol. 96: 285-294.DOI: 10.1016/j.jmst.2021.04.031
• Research Article • Previous Articles Next Articles
Nan Xua,*, Chun Wanga, Liuquan Yanga, Eric Kumi Barimahb, Gin Joseb, Anne Nevillea, Ardian Morinaa,*
Received:
2021-01-15
Revised:
2021-04-01
Accepted:
2021-04-12
Published:
2022-01-10
Online:
2022-01-05
Contact:
Nan Xu,Ardian Morina
About author:
*Nan Xu, Chun Wang, Liuquan Yang, Eric Kumi Barimah, Gin Jose, Anne Neville, Ardian Morina. Nano-scale coating wear measurement by introducing Raman-sensing underlayer[J]. J. Mater. Sci. Technol., 2022, 96: 285-294.
Fig. 1. Schematic illustration of coating thickness quantification methods under dry friction. (a) Coating thickness quantification method based on the Raman signal of the silicon substrate. (b) Light wavelength shift on the sites of Raman scattering. (c) Coating thickness quantification method based on the Raman signal of carbon films.
Fig. 2. Transmittance spectra (a) and reflectivity spectra (b) of as-grown a-C:H films of different thicknesses deposited on the glass substrate. Raman spectra of as-grown a-C:H films of different thicknesses deposited on silicon wafers ((c), silicon 1st band; (d), carbon band). Comparison between the measured thickness of as-grown a-C:H films by optical profilometer and calculated thickness based on Raman intensity of silicon band (e) and G peak of carbon band (f).
Fig. 3. (a) Intensity of silicon bands, intensity and position of G peak of carbon bands, and area ratios of D peak and G peak (AD/AG). AD/AG increases obviously in the center region of wear track indicating the increase of sp2 fraction. (b) Calculated wear profile curves based on the Raman intensity of silicon signal and carbon signal.
Fig. 4. (a-c) Comparison of the wear profile curves obtained by different methods (90 min tribo-test). Non-contact optical profilometer: wear profile curves before (blue line) and after depositing iridium layer (green line), and wear profile curves after FIB (purple line). Wear quantification method based on the Raman intensity of silicon signal (red line). Combination of FIB, SEM, and TEM measurements: actual thickness values (+) in the marked areas of (a) and (b). Grey areas are corresponding to targeted FIB areas.
Fig. 5. Comparison between calculated wear profile derived from Raman intensity of silicon and carbon bands and measured wear profile characterized by non-contact optical profilometer (before and after depositing iridium layer on top of a-C:H).
Fig. 6. TEM images showing the cross-sectional morphology of FIB lamellar specimens from the center area (a), side area (d) and unworn area (g) as marked in Fig. 5, evolution of C-K EELS (STEM) core-edge spectra recorded across the cross-sectional area from the wear center (b), side area (e) and unworn area (h) as marked in (a), (d) and (g) respectively, and evolution of the calculated EELS C-bonds fractions across the cross-sectional area from the wear center (c), side area (f) and unworn area (i) from the EELS C-K edges presented in (b), (e) and (h). Error bars denote s.d. of calculated bond fractions. TEM images of the cross-sectional morphology of the interface areas between a-C:H and Si wafer from the center area (j), side area (k), and unworn area (l). The thickness of the layer with nanovoid increases as it moves towards to wear center.
Fig. 7. (a-h) Comparison of the wear profile curves obtained by different methods (dry friction with test time range 10-110 min). Non-contact optical profilometer: wear profile curves before (blue line) and after depositing iridium layer (green line). Wear quantification method based on the Raman intensity of silicon signal (red line). The AD/AG ratios across the wear scars (grey line). (i) Evolution of width and depth of wear scars with test time.
Fig. 9. (a-d) Comparison of the wear profile curves obtained by different methods (oil-lubricated condition, PAO; test time 30-110 min). Non-contact optical profilometer: wear profile curves before (blue line) and after depositing iridium layer (green line). Wear quantification method based on the Raman intensity of silicon signal (black and red lines). (e) Evolution of width and depth of wear scars with test time. (f) Comparison of the wear profile curves obtained by different methods. Here, we drop PAO on top of the tested sample under dry friction with test time of 110 min as shown in Fig. 7(h). Non-contact optical profilometer: wear profile curves before (blue line) and after depositing iridium layer (green line). Wear quantification method based on the Raman intensity of silicon signal with oil on top (black and red lines).
[1] | K. Holmberg, A. Matthews, Amsterdam, 2009. |
[2] |
X. Yang, W. Li, S. Yu, Y. Xu, K. Hu, Y. Zhao, J. Mater. Sci. Technol. 59 (2020) 117-128.
DOI URL |
[3] |
C. Guo, F. Zhou, M. Chen, J. Wang, S. Zhu, F. Wang, J. Mater. Sci. Technol. 70 (2021) 1-11.
DOI URL |
[4] |
I. El-Thalji, E. Jantunen, Mech. Syst. Signal Process. 60-61 (2015) 252-272.
DOI URL |
[5] |
G.Y. Lee, M. Kim, Y.J. Quan, M.S. Kim, T.J.Y. Kim, H.S. Yoon, S. Min, D.H. Kim, J.W. Mun, J.W. Oh, I.G. Choi, C.S. Kim, W.S. Chu, J. Yang, B. Bhandari, C.M. Lee, J.B. Ihn, S.H. Ahn, J. Mech. Sci. Technol. 32 (2018) 987-1009.
DOI URL |
[6] |
C. Scheffer, H. Kratz, P. Heyns, F. Klocke, Int. J. Mach. Tool. Manuf. 43 (2003) 973-985.
DOI URL |
[7] |
H. Shao, H.L. Wang, X.M. Zhao, Int. J. Mach. Tool. Manuf. 44 (2004) 1503-1509.
DOI URL |
[8] |
M. Nouri, B.K. Fussell, B.L. Ziniti, E. Linder, Int. J. Mach. Tool. Manuf. 89 (2015) 1-13.
DOI URL |
[9] |
Y. Zhou, X. Wei, Int. J. Adv. Manuf. Technol. 96 (2018) 2509-2523.
DOI URL |
[10] |
L. Dong-Hyeok, C. Nahm-Gyoo, Meas. Sci. Technol. 23 (2012) 105601.
DOI URL |
[11] |
C.Y. Poon, B. Bhushan, Wear 190 (1995) 76-88.
DOI URL |
[12] | B. Bhushan, B.K. Gupta, New York, 1991. |
[13] |
C. Muratore, D.R. Clarke, J.G. Jones, A.A. Voevodin, Wear 265 (2008) 913-920.
DOI URL |
[14] |
L. Fang, A. Yin, S. Zhu, J. Ding, L. Chen, D. Zhang, Z. Pu, T. Liu, J. Alloy. Compd. 727 (2017) 735-743.
DOI URL |
[15] |
T.W. Scharf, I.L. Singer, Thin Solid Films 440 (2003) 138-144.
DOI URL |
[16] |
T.W. Scharf, I.L. Singer, Tribol. Lett. 14 (2003) 3-8.
DOI URL |
[17] |
J. Robertson, Mater. Sci. Eng. R 37 (2002) 129-281.
DOI URL |
[18] |
X. Chen, C. Zhang, T. Kato, X.A. Yang, S. Wu, R. Wang, M. Nosaka, J.B. Luo, Nat. Commun. 8 (2017) 1675.
DOI URL |
[19] |
X. Zhang, R. Schneider, E. Müller, D. Gerthsen, Carbon 102 (2016) 198-207.
DOI URL |
[20] | P.J. Larkin, Waltham, 2011. |
[21] |
P.K. Chu, L. Li, Mater. Chem. Phys. 96 (2006) 253-277.
DOI URL |
[22] |
C. Casiraghi, A.C. Ferrari, J. Robertson, Phys. Rev. B 72 (2005) 85401-85414.
DOI URL |
[23] |
H. Liang, F. Kaufman, R. Sevilla, S. Anjur, Wear 211 (1997) 271-279.
DOI URL |
[24] |
Y.W. Zhao, L. Chang, Wear 252 (2002) 220-226.
DOI URL |
[25] | X. Lu, K. Yao, J. Ouyang, Y. Tian, Wear 326 (2015) 68-73. |
[26] |
P. Manimunda, A. Al-Azizi, S.H. Kim, R. Chromik, ACS Appl. Mater. Interfaces 9 (2017) 16704-16714.
DOI URL |
[27] |
J. Xu, X. Chen, P. Grutzmacher, A. Rosenkranz, J. Li, J. Jin, C. Zhang, J. Luo, ACS Appl. Mater. Interfaces 11 (2019) 25535-25546.
DOI URL |
[28] | D.Y. Wang, C.L. Chang, W.Y. Ho, Surf. Coat. Technol. 120 (1999) 138-144. |
[29] |
A. Alazizi, A. Draskovics, G. Ramirez, A. Erdemir, S.H. Kim, Langmuir 32 (2016) 1996-2004.
DOI URL PMID |
[30] |
M. Marino, Langmuir 27 (2011) 12702-12708.
DOI URL |
[31] |
J. Fontaine, T. Le Mogne, J.L. Loubet, M. Belin, Thin Solid Films 482 (2005) 99-108.
DOI URL |
[32] |
M. Yang, M.J. Marino, V.J. Bojan, O.L. Eryilmaz, A. Erdemir, S.H. Kim, Appl. Surf. Sci. 257 (2011) 7633-7638.
DOI URL |
[33] | H.I. Kim, J.R. Lince, O.L. Eryilmaz, A. Erdemir, Tribol. Lett. 21 (2006) 53-58. |
[34] |
J. Shi, Z.B. Gong, Y.F. Wang, K.X. Gao, J.Y. Zhang, Appl. Surf. Sci. 422 (2017) 147-154.
DOI URL |
[35] |
J. Shi, Z. Gong, C. Wang, B. Zhang, J. Zhang, Diamond Relat. Mater. 77 (2017) 84-91.
DOI URL |
[36] |
M. Malhotra, S. Kumar, Diamond Relat. Mater. 6 (1997) 1830-1835.
DOI URL |
[37] |
T. Zecho, B.D. Brandner, J. Biener, J. Kuppers, J. Phys. Chem. B 105 (2001) 6194-6201.
DOI URL |
[38] |
A. Rusanov, R. Nevshupa, J. Fontaine, J.M. Martin, T.L. Mogne, V. Elinson, A. Lyamin, E. Roman, Carbon 81 (2015) 788-799.
DOI URL |
[39] | A. Erdemir, C. Donnet, J. Phys. D Appl. Phys. 39 (2006) R311-R327. |
[40] |
D.L. Williamson, A.H. Mahan, B.P. Nelson, R.S. Crandall, Appl. Phys. Lett. 55 (1989) 783-785.
DOI URL |
[41] |
A. Sattler, G. Parkin, Nature 463 (2010) 523-526.
DOI URL |
[42] |
S. Soltanahmadi, T. Charpentier, I. Nedelcu, V. Khetan, A. Morina, H.M. Freeman, A.P. Brown, Brydson R, M.C.P. Eijk, A. Neville, ACS Appl. Mater. Interfaces 11 (2019) 41676-41687.
DOI URL |
[1] | Jing Wang, Ning Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Guichang Liu, Wen Sun, Yiteng Hu, Yanli Ning. Hexagonal boron nitride/poly(vinyl butyral) composite coatings for corrosion protection of copper [J]. J. Mater. Sci. Technol., 2022, 96(0): 103-112. |
[2] | Jijun Zhang, Zexuan Wang, Jiawei Li, Yaqiang Dong, Aina He, Guoguo Tan, Qikui Man, Bin Shen, Junqiang Wang, Weixing Xia, Jun Shen, Xin-min Wang. Magnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shielding [J]. J. Mater. Sci. Technol., 2022, 96(0): 11-20. |
[3] | Xinfa Tian, Hejun Li, Xiaohong Shi, Hongjiao Lin, Ningning Yan, Tao Feng. Morphologies evolution and mechanical behaviors of SiC nanowires reinforced C/(PyC-SiC)n multilayered matrix composites [J]. J. Mater. Sci. Technol., 2022, 96(0): 190-198. |
[4] | Wei Feng, Nian Liu, Lingling Gao, Qian Zhou, Luofeng Yu, Xiaoting Ye, Jingjing Huo, Xiao Huang, Peng Li, Wei Huang. Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines [J]. J. Mater. Sci. Technol., 2021, 69(0): 188-199. |
[5] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[6] | Yanqi Ma, Haowei Huang, Hongda Zhou, Michael Graham, James Smith, Xinxin Sheng, Ying Chen, Li Zhang, Xinya Zhang, Elena Shchukina, Dmitry Shchukin. Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide [J]. J. Mater. Sci. Technol., 2021, 95(0): 95-104. |
[7] | Yue Wang, Xin Mu, Junhua Dong, Aniefiok Joseph Umoh, Wei Ke. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76(0): 41-50. |
[8] | Jintao Shuai, Xiao Zuo, Zhenyu Wang, Lili Sun, Rende Chen, Li Wang, Aiying Wang, Peiling Ke. Erosion behavior and failure mechanism of Ti/TiAlN multilayer coatings eroded by silica sand and glass beads [J]. J. Mater. Sci. Technol., 2021, 80(0): 179-190. |
[9] | Rui Liu, Li Liu, Wenliang Tian, Yu Cui, Fuhui Wang. Finite element analysis of effect of interfacial bubbles on performance of epoxy coatings under alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 233-240. |
[10] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
[11] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[12] | Mengjing Fu, Yijing Liang, Xue Lv, Chengnan Li, Yi Yan Yang, Peiyan Yuan, Xin Ding. Recent advances in hydrogel-based anti-infective coatings [J]. J. Mater. Sci. Technol., 2021, 85(0): 169-183. |
[13] | Hui Liang, Dongxu Qiao, Junwei Miao, Zhiqiang Cao, Hui Jiang, Tongmin Wang. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85(0): 224-234. |
[14] | Boxin Wei, Jin Xu, Qi Fu, Qingyu Qin, Yunlong Bai, Cheng Sun, Chuan Wang, Zhenyao Wang, Wei Ke. Effect of sulfate-reducing bacteria on corrosion of X80 pipeline steel under disbonded coating in a red soil solution [J]. J. Mater. Sci. Technol., 2021, 87(0): 1-17. |
[15] | Peng-fei He, Guo-zheng Ma, Hai-dou Wang, Ling Tang, Ming Liu, Yu Bai, Yu Wang, Jian-jiang Tang, Dong-yu He, Hai-chao Zhao, Tian-yang Yu. Influence of in-flight particle characteristics and substrate temperature on the formation mechanisms of hypereutectic Al-Si-Cu coatings prepared by supersonic atmospheric plasma spraying [J]. J. Mater. Sci. Technol., 2021, 87(0): 216-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||