J. Mater. Sci. Technol. ›› 2022, Vol. 96: 262-284.DOI: 10.1016/j.jmst.2021.04.033
• Research Article • Previous Articles Next Articles
Jianen Zhoua,1, Qingyun Yanga,1, Qiongyi Xiea, Hong Oua, Xiaoming Lina,*(), Akif Zeba, Lei Hub,*(
), Yongbo Wuc,*(
), Guozheng Maa,*(
)
Received:
2021-01-10
Revised:
2021-04-07
Accepted:
2021-04-07
Published:
2022-01-10
Online:
2022-01-05
Contact:
Xiaoming Lin,Lei Hu,Yongbo Wu,Guozheng Ma
About author:
gzma@scnu.edu.cn (G. Ma).Jianen Zhou, Qingyun Yang, Qiongyi Xie, Hong Ou, Xiaoming Lin, Akif Zeb, Lei Hu, Yongbo Wu, Guozheng Ma. Recent progress in Co-based metal-organic framework derivatives for advanced batteries[J]. J. Mater. Sci. Technol., 2022, 96: 262-284.
Fig. 2. (a) Schematic diagram of the synthesis of LiCoO2/CNTs@AlF3 nanoparticles [30]. (b) Schematic illustration of CNSCo-0.5 and the mechanism of Li-ion insertion [34]. (c-e) SEM images and (f) rate performance of the LCO@ACF cathode [31]. (g) Cycling performance of CNSCo-0.5 at 1000 mA g-1 [34].
Fig. 3. Schematic illustration of synthesis of (a) Co3O4 with ball-in-dodecahedron structure [40]. (b) Co3O4 with dodecahedrons with concave surfaces [40] and (c) Co3O4@NGN composite [47]. (d, e) Simulated crystal morphology and (f, g) SEM images of the rod-like MOF and the cube-like MOF, respectively [51]. (h) The CV curves of CoO-NCNTs at 0.05 mV s-1 [57]. (i) Long-term cycling performance of ball-in-dodecahedron and concave-dodecahedron Co3O4 [40].
Precursor | Synthesis method | Target product | CD | CN | RC | Refs. |
---|---|---|---|---|---|---|
ZIF-67 | Heated at 350 °C for 2 h (1 °C min-1) | ball-in-dodecahedron Co3O4 | 100 | 100 | 1335 | [ |
Co(HO-BDC)(bbe) | Sintered at 450 °C under Ar for 3 h | Co3O4 | 100 | 60 | 635.4 | [ |
Co-BTC | Calcination in air for 30 min at 500 °C (1 °C min-1) | opened book like Co3O4 | 800 | 50 | 597 | [ |
ZIF-67 | Calcination in N2 for 30 min at 350 °C (5 °C min-1) | Co3O4 hollow dodecahedra | 100 | 100 | 780 | [ |
ZIF-67 | Heated at 300 °C for 30 min under Ar (2 °C min-1) | nanocage Co3O4 | 500 | 100 | 810 | [ |
Co-CP | Heated at 400 °C for 2 h | Co3O4 hollow nanospheres | 100 | 100 | 851 | [ |
ZIF-67 | Heated at 450 °C under Ar/H2 and 250 °C in air | HCO/NGC | 1000 | 250 | 1030 | [ |
ZIF-67@NGA | Heated at 300 °C for 1 h in air (2 °C min-1) | Co3O4@NGN | 1000 | 400 | 616 | [ |
ES-ZIF-67@GO | Reduced under N2/H2 and oxidized at 350 °C in air | ES-CNCo3O4@rGO | 100 | 100 | 1315 | [ |
Co9(btc)6(tpt)2(H2O)15 | Calcination at 500 °C for 5 h (5 °C min-1) | Co3O4 nanomaterials | 100 | 500 | 936.2 | [ |
Vitamin B12 | Pyrolysis at 700 °C for 2 h in N2 (5 °C min-1) | Co3O4/N-C | 100 | 100 | 423 | [ |
Co3(TATAB)2(TPT)2(H2O)10 | Heated at 700 °C under N2 and then 250 °C in air | Co/Co3O4@N-C-700 | 100 | 100 | 903 | [ |
Co-Cu-BTC | Calcination at 450 °C for 2 h in air | Co3O4@CuO@GQDs | 100 | 200 | 1054 | [ |
MIL-88-Fe/ZIF-67/GO | Annealed at 450 °C under N2 and then 380 °C in air | Fe2O3/Co3O4/rGO | 1000 | 110 | 774 | [ |
ZIF-67 | Solvent reaction and heated at 600 °C for 1 h in air | SnO2-Co3O4 NFs | 500 | 300 | 1287 | [ |
MIL-125@ZIF-67 | Calcination in air for 2 h at 450 °C (2 °C min-1) | TiO2@Co3O4 | 200 | 150 | 920.5 | [ |
ZIF-67 | Heated at 450 °C in air and then 400 °C with TALH | Co3O4@TiO2 | 100 | 100 | 1057 | [ |
Zn-ZIF-67 | Heated in N2 at 500 °C and then exposed to air | ZnCo2O4/Co3O4 | 1000 | 700 | 1600 | [ |
MOF-74-FeCo-xy | Heated at 700 °C in air for 4 h (5 °C min-1) | Co3O4-CoFe2O4 | 100 | 80 | 940 | [ |
Table 1 MOF-derived Co3O4 as anodes for LIBs.
Precursor | Synthesis method | Target product | CD | CN | RC | Refs. |
---|---|---|---|---|---|---|
ZIF-67 | Heated at 350 °C for 2 h (1 °C min-1) | ball-in-dodecahedron Co3O4 | 100 | 100 | 1335 | [ |
Co(HO-BDC)(bbe) | Sintered at 450 °C under Ar for 3 h | Co3O4 | 100 | 60 | 635.4 | [ |
Co-BTC | Calcination in air for 30 min at 500 °C (1 °C min-1) | opened book like Co3O4 | 800 | 50 | 597 | [ |
ZIF-67 | Calcination in N2 for 30 min at 350 °C (5 °C min-1) | Co3O4 hollow dodecahedra | 100 | 100 | 780 | [ |
ZIF-67 | Heated at 300 °C for 30 min under Ar (2 °C min-1) | nanocage Co3O4 | 500 | 100 | 810 | [ |
Co-CP | Heated at 400 °C for 2 h | Co3O4 hollow nanospheres | 100 | 100 | 851 | [ |
ZIF-67 | Heated at 450 °C under Ar/H2 and 250 °C in air | HCO/NGC | 1000 | 250 | 1030 | [ |
ZIF-67@NGA | Heated at 300 °C for 1 h in air (2 °C min-1) | Co3O4@NGN | 1000 | 400 | 616 | [ |
ES-ZIF-67@GO | Reduced under N2/H2 and oxidized at 350 °C in air | ES-CNCo3O4@rGO | 100 | 100 | 1315 | [ |
Co9(btc)6(tpt)2(H2O)15 | Calcination at 500 °C for 5 h (5 °C min-1) | Co3O4 nanomaterials | 100 | 500 | 936.2 | [ |
Vitamin B12 | Pyrolysis at 700 °C for 2 h in N2 (5 °C min-1) | Co3O4/N-C | 100 | 100 | 423 | [ |
Co3(TATAB)2(TPT)2(H2O)10 | Heated at 700 °C under N2 and then 250 °C in air | Co/Co3O4@N-C-700 | 100 | 100 | 903 | [ |
Co-Cu-BTC | Calcination at 450 °C for 2 h in air | Co3O4@CuO@GQDs | 100 | 200 | 1054 | [ |
MIL-88-Fe/ZIF-67/GO | Annealed at 450 °C under N2 and then 380 °C in air | Fe2O3/Co3O4/rGO | 1000 | 110 | 774 | [ |
ZIF-67 | Solvent reaction and heated at 600 °C for 1 h in air | SnO2-Co3O4 NFs | 500 | 300 | 1287 | [ |
MIL-125@ZIF-67 | Calcination in air for 2 h at 450 °C (2 °C min-1) | TiO2@Co3O4 | 200 | 150 | 920.5 | [ |
ZIF-67 | Heated at 450 °C in air and then 400 °C with TALH | Co3O4@TiO2 | 100 | 100 | 1057 | [ |
Zn-ZIF-67 | Heated in N2 at 500 °C and then exposed to air | ZnCo2O4/Co3O4 | 1000 | 700 | 1600 | [ |
MOF-74-FeCo-xy | Heated at 700 °C in air for 4 h (5 °C min-1) | Co3O4-CoFe2O4 | 100 | 80 | 940 | [ |
Fig. 4. Schematic illustration of the synthesis process of (a) SnO2/Co@C nanocubes [63] and (b) CoO/Co2Mo3O8@MXene [89]. (c, d) SEM images of MIL-88-Fe/ZIF-67/GO composite fiber [67]. (e) SEM image and (f) EDX mappings of Fe2O3/Co3O4/rGO [67]. (g) Nyquist plots of Co/Co3O4@N-C-600, Co/Co3O4@N-C-700 and Co/Co3O4@N-C-800 [60]. (h) CV curves at a scan rate of 0.1 mV s-1 for the first three cycles of the C@ZnO/ZnCo2O4/CuCo2O4 electrode [75]. (i) Cycling performance of the NiCo2O4@ZIF-67 and NiCo2O4@ZIF-67/GO at the current density of 0.5 A g-1 [82].
Fig. 5. Schematic illustration of the synthesis process of (a) CoS/NC@MoS2 [97] and (b) CoxP@NC [115]. (c) Lithium storage mechanism and (d) synthetic process for CoxP-NC nanohybrids [114]. (e) CV curves of the CoP/NC electrode at 0.05 mV s-1 from 0 to 3.1 V [116]. (f) Cycling performance of ZnCoS@Co9S8/NC at a current density of 2 A g-1 [104].
Fig. 6. Schematic illustration of the synthesis of (a) NPC-600 [125]. (b) Schematic illustration of the preparation, (c, d) TEM images and the corresponding HRTEM image for Bi-C/CF [126]. (f, g) TEM images of ZIF-67/Ni-Co LDH and (g) Co/(NiCo)Se2, respectively [137]. (h) Pore size distribution of the Ni-doped Co/CoO/NC hybrid [130]. (i) Long-term cycling performance of CoSe2@N-PGC/CNTs nanocube [136].
Fig. 7. Synthesis process of (a) CNT/Co-NC compocite [148] and (b) Co9S8-3DGF/S composite [160]. (c) Working mechanism of the Co9S8-3DGF/S cathode [160]. Schematic diagram showing the crystal structure of Co3O4 adsorbing (d) Li2S and (e) Li2S4 [155]. (f) Cycling performance, (g) rate performances, and (h) long-term cycling performance of the S-NPC/G and S-NPC cathodes [153].
Fig. 8. Schematic for synthesis of (a) Co/Co-N-C [183] and (b) Co-N-C@graphene [184]. (c) SEM images of Co/Zn (1:1) hybrid ZIF-L [179]. (d) SEM (e) TEM and (f) HRTEM images of CoZn-NC-700 [186]. (g) TEM and (h) HRTEM images of Co-NC@Al2O3 [198]. (i) Scheme of the Zn-air battery with Co-CoO-Co3O4/NC air cathode [196]. (j) Power-current density curves and (k) voltage-capacity curves of ZIF-L-D-Co3O4/CC and Pt/C ZAB air cathodes [193].
Fig. 9. (a) Schematic illustration of synthesis of AC@CoS/NCNTs/CoS@CNFs [206]. (b) Crystal structure and (c) synthetic route of MOFs-Co3(PO4)2@C [209]. (d, e) FESEM images of AC@CoS/NCNTs/CoS@CNFs [206]. SEM images of (f) C-Co-N and (g) C-Co-N/Se [213]. (h) Cycling performance of rGO@MCSe [207]. (i) CV curves of the Co-CoO@NC and KB electrodes at 0.1 mV s-1 [216]. (j) The first discharge-charge curves of Co3O4/CC, Co3O4@NiCo2O4/CC, and NiCo2O4/CC cathodes [219].
[1] |
L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Coord. Chem. Rev. 307 (2016) 361-381.
DOI URL |
[2] |
R. Gu, Z. Ma, T. Cheng, Y. Lyu, A. Nie, B. Guo, ACS Appl. Mater. Interfaces 10 (2018) 31271-31279.
DOI URL |
[3] |
Z. Liang, R. Zhao, T. Qiu, R. Zou, Q. Xu, EnergyChem 1 (2019) 100001.
DOI URL |
[4] |
P. Canepa, G. Sai Gautam, D.C. Hannah, R. Malik, M. Liu, K.G. Gallagher, K.A. Persson, G. Ceder, Chem. Rev. 117 (2017) 4287-4341.
DOI URL |
[5] |
B. Liu, R. Fang, D. Xie, W. Zhang, H. Huang, Y. Xia, X. Wang, X. Xia, J. Tu, Energy Environ. Mater. 1 (2018) 196-208.
DOI URL |
[6] |
X. Zhao, Z. Zhao-Karger, M. Fichtner, X. Shen, Angew. Chem. Int. Ed. 59 (2020) 5902-5949.
DOI URL |
[7] |
X. Li, X. Yang, H. Xue, H. Pang, Q. Xu, EnergyChem 2 (2020) 100027-100055.
DOI URL |
[8] |
J. Zhou, B. Wang, Chem. Soc. Rev. 46 (2017) 6927-6945.
DOI URL |
[9] |
Y. Xu, Q. Li, H. Xue, H. Pang, Coord. Chem. Rev. 376 (2018) 292-318.
DOI URL |
[10] | C. Dey, T. Kundu, B.P. Biswal, A. Mallick, R. Banerjee, Acta Crystallogr. B Struct.Sci. Cryst. Eng. Mater. 70 (2014) 3-10. |
[11] |
G. Ferey, Chem. Soc. Rev. 37 (2008) 191-214.
DOI URL |
[12] |
L. Zhang, H. Liu, W. Shi, P. Cheng, Coord. Chem. Rev. 388 (2019) 293-309.
DOI URL |
[13] |
R.C.K. Reddy, J. Lin, Y. Chen, C. Zeng, X. Lin, Y. Cai, C.Y. Su, Coord. Chem. Rev. 420 (2020) 213434.
DOI URL |
[14] |
X. Zhang, A. Chen, M. Zhong, Z. Zhang, X. Zhang, Z. Zhou, X.H. Bu, Electrochem. Energy Rev. 2 (2018) 29-104.
DOI URL |
[15] |
A. Indra, T. Song, U. Paik, Adv. Mater. 30 (2018) 1705146.
DOI URL |
[16] |
P. Silva, S.M. Vilela, J.P. Tome, F.A. Almeida Paz, Chem. Soc. Rev. 44 (2015) 6774-6803.
DOI URL |
[17] |
L. Schlechte, V. Bon, R. Grünker, N. Klein, I. Senkovska, S. Kaskel, Polyhedron 44 (2012) 179-186.
DOI URL |
[18] |
S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Adv. Energy Mater. 7 (2017) 1602733.
DOI URL |
[19] |
T. Li, Y. Bai, Y. Wang, H. Xu, H. Jin, Coord. Chem. Rev. 410 (2020) 213221.
DOI URL |
[20] |
F. Sun, Q. Li, H. Xue, H. Pang, ChemElectroChem 6 (2019) 1273-1299.
DOI URL |
[21] |
Z. Xie, W. Xu, X. Cui, Y. Wang, ChemSusChem 10 (2017) 1645-1663.
DOI URL |
[22] |
V. Shrivastav, S. Sundriyal, P. Goel, H. Kaur, S.K. Tuteja, K. Vikrant, K.H. Kim, U.K. Tiwari, A. Deep, Coord. Chem. Rev. 393 (2019) 48-78.
DOI URL |
[23] |
Z. Zhao, J. Ding, R. Zhu, H. Pang, J. Mater. Chem. A 7 (2019) 15519-15540.
DOI URL |
[24] |
M. Yoshio, H. Wang, K. Fukuda, T. Umeno, T. Abe, Z. Ogumi, J. Mater. Chem. 14 (2004) 1754-1758.
DOI URL |
[25] |
W. Wei, F.M. Jiang, Sci. Bull. 58 (2013) 4692-4695.
DOI URL |
[26] |
J. Liu, C. Wu, D. Xiao, P. Kopold, L. Gu, P.A. van Aken, J. Maier, Y. Yu, Small 12 (2016) 2354-2364.
DOI URL |
[27] |
Q. Cheng, Y. Chen, X. Lin, J. Liu, Z. Yuan, Y. Cai, J. Phys. Chem. C 124 (2020) 8624-8632.
DOI URL |
[28] |
T. Kawamura, M. Makidera, S. Okada, K. Koga, N. Miura, J.i. Yamaki, J. Power Sources 146 (2005) 27-32.
DOI URL |
[29] |
I.D. Scott, Y.S. Jung, A.S. Cavanagh, Y. Yan, A.C. Dillon, S.M. George, S.H. Lee, Nano Lett. 11 (2011) 414-418.
DOI URL |
[30] |
Q. Cheng, J. Zhou, C. Ke, L. Qin, X. Lin, B. Lokesh, G. Zhang, Y. Cai, Inorg. Chem. 58 (2019) 11993-11996.
DOI URL |
[31] | J. Lin, C. Zeng, L. Wang, Y. Pan, X. Lin, R.C.K. Reddy, Y. Cai, C.Y. Su, Appl. Mater. Today 19 (2020) 100565. |
[32] |
M. Huang, K. Mi, J. Zhang, H. Liu, T. Yu, A. Yuan, Q. Kong, S. Xiong, J. Mater. Chem. A 5 (2017) 266-274.
DOI URL |
[33] |
X. Shi, H. Song, A. Li, X. Chen, J. Zhou, Z. Ma, J. Mater. Chem. A 5 (2017) 5873-5879.
DOI URL |
[34] |
W. Shuang, L. Kong, M. Zhong, D. Wang, J. Liu, X.H. Bu, Dalton Trans. 47 (2018) 12385-12392.
DOI URL PMID |
[35] |
M. Du, K. Rui, Y. Chang, Y. Zhang, Z. Ma, W. Sun, Q. Yan, J. Zhu, W. Huang, Small 14 (2018) 1702770.
DOI URL |
[36] |
M. Du, D. Song, A. Huang, R. Chen, D. Jin, K. Rui, C. Zhang, J. Zhu, W. Huang, Angew. Chem. Int. Ed. 58 (2019) 5307-5311.
DOI URL |
[37] |
W. Zhang, B. Wang, H. Luo, F. Jin, T. Ruan, D. Wang, J. Alloys Compd. 803 (2019) 664-670.
DOI URL |
[38] |
J. Zhang, A. Yu, Sci. Bull. 60 (2015) 823-838.
DOI URL |
[39] |
K.J. Lee, T.H. Kim, T.K. Kim, J.H. Lee, H.K. Song, H.R. Moon, J. Mater. Chem. A 2 (2014) 14393-14400.
DOI URL |
[40] |
J. Shao, Z. Wan, H. Liu, H. Zheng, T. Gao, M. Shen, Q. Qu, H. Zheng, J. Mater. Chem. A 2 (2014) 12194-12200.
DOI URL |
[41] | Y.H. Wen, G.F. Xu, K. Yao, R.T. Dou, J.X. Guo, Z. Anorg.Allg. Chem. 640 (2014) 2091-2096. |
[42] |
B. Yan, L. Chen, Y. Liu, G. Zhu, C. Wang, H. Zhang, G. Yang, H. Ye, A. Yuan, CrystEngComm 16 (2014) 10227-10234.
DOI URL |
[43] |
R. Wu, X. Qian, X. Rui, H. Liu, B. Yadian, K. Zhou, J. Wei, Q. Yan, X.Q. Feng, Y. Long, L. Wang, Y. Huang, Small 10 (2014) 1932-1938.
DOI URL |
[44] |
Y. Wang, B. Wang, F. Xiao, Z. Huang, Y. Wang, C. Richardson, Z. Chen, L. Jiao, H. Yuan, J. Power Sources 298 (2015) 203-208.
DOI URL |
[45] |
R. Wu, X. Qian, A.W.K. Law, K. Zhou, RSC Adv. 6 (2016) 50846-50850.
DOI URL |
[46] |
S.K. Park, J.K. Kim, J.H. Kim, Y.C. Kang, Mater. Charact. 132 (2017) 320-329.
DOI URL |
[47] |
Z.Y. Sui, P.Y. Zhang, M.Y. Xu, Y.W. Liu, Z.X. Wei, B.H. Han, ACS Appl. Mater. Interfaces 9 (2017) 43171-43178.
DOI URL |
[48] |
H. Li, B.R. Lu, W.D. Zhang, F.H. Cao, H. Li, C.L. Zhang, Energy Technology 8 (2020) 2000209.
DOI URL |
[49] |
D. Ge, J. Peng, G. Qu, H. Geng, Y. Deng, J. Wu, X. Cao, J. Zheng, H. Gu, New J. Chem. 40 (2016) 9238-9244.
DOI URL |
[50] |
X. Hu, H. Hu, C. Li, T. Li, X. Lou, Q. Chen, B. Hu, J. Solid State Chem. 242 (2016) 71-76.
DOI URL |
[51] |
A. Li, B. Qian, M. Zhong, Y. Liu, Z. Chang, X.-H. Bu, Mater. Chem. Front. 3 (2019) 1398-1405.
DOI URL |
[52] |
J. Qiu, M. Yu, Z. Zhang, X. Cai, G. Guo, J. Alloys Compd. 775 (2019) 366-371.
DOI URL |
[53] |
J.S. Do, C.H. Weng, J. Power Sources 146 (2005) 482-486.
DOI URL |
[54] |
S. Wang, M. Chen, Y. Xie, Y. Fan, D. Wang, J.J. Jiang, Y. Li, H. Grutzmacher, C.Y. Su, Small 12 (2016) 2365-2375.
DOI URL |
[55] |
F. Wang, H.Y. Zhuo, X. Han, W.-M. Chen, D. Sun, J. Mater. Chem. A 5 (2017) 22964-22969.
DOI URL |
[56] |
Z. He, J. Huang, K. Liu, X. Tang, Y. Dai, J. Alloys Compd. 811 (2019) 151971.
DOI URL |
[57] |
Y. Pang, S. Chen, C. Xiao, S. Ma, S. Ding, J. Mater. Chem. A 7 (2019) 4126-4133.
DOI URL |
[58] |
H. Yue, Z. Shi, Q. Wang, Z. Cao, H. Dong, Y. Qiao, Y. Yin, S. Yang, ACS Appl. Mater. Interfaces 6 (2014) 17067-17074.
DOI URL |
[59] |
H. Yue, Z. Shi, Q. Wang, T. du, Y. Ding, J. Zhang, N. Huo, S. Yang, RSC Adv. 5 (2015) 75653-75658.
DOI URL |
[60] |
M. Zhong, W.W. He, W. Shuang, Y.Y. Liu, T.L. Hu, X.H. Bu, Inorg. Chem. 57 (2018) 4620-4628.
DOI URL PMID |
[61] |
J. Li, D. Wang, J. Zhou, L. Hou, F. Gao, ChemElectroChem 6 (2019) 917-927.
DOI URL |
[62] |
Z.D. Huang, Z. Gong, Q. Kang, Y. Fang, X.S. Yang, R. Liu, X. Lin, X. Feng, Y. Ma, D. Wang, Mater. Chem. Front. 1 (2017) 1975-1981.
DOI URL |
[63] |
Q. He, J. Liu, Z. Li, Q. Li, L. Xu, B. Zhang, J. Meng, Y. Wu, L. Mai, Small 13 (2017) 1701504.
DOI URL |
[64] |
G. Fang, J. Zhou, Y. Cai, S. Liu, X. Tan, A. Pan, S. Liang, J. Mater. Chem. A 5 (2017) 13983-13993.
DOI URL |
[65] |
X. Wang, H. Xue, Z. Na, D. Yin, Q. Li, C. Wang, L. Wang, G. Huang, J. Power Sources 396 (2018) 659-666.
DOI URL |
[66] |
M. Wu, H. Chen, L.-P. Lv, Y. Wang, Chem. Eng. J. 373 (2019) 985-994.
DOI URL |
[67] |
L. Zhang, W. Liu, W. Shi, X. Xu, J. Mao, P. Li, C. Ye, R. Yin, S. Ye, X. Liu, X. Cao, C. Gao, Chem. Eur. J. 24 (2018) 13792-13799.
DOI URL |
[68] |
J.Y. Cheong, W.T. Koo, C. Kim, J.W. Jung, I.D. Kim, ACS Appl. Mater. Interfaces 10 (2018) 20540-20549.
DOI URL |
[69] |
X. Yang, Y. Wang, Y. Hu, H. Zhao, Y. Sun, K. Hua, G. Chen, ChemElectroChem 6 (2019) 3657-3666.
DOI URL |
[70] |
H. Ding, X.K. Zhang, J.Q. Fan, X.Q. Zhan, L. Xie, D. Shi, T. Jiang, F.C. Tsai, ACS Omega 4 (2019) 13241-13249.
DOI URL PMID |
[71] |
S. Wu, J. Liu, H. Wang, H. Yan, Int. J. Energy Res. 43 (2019) 697-716.
DOI URL |
[72] |
R. Wu, X. Qian, K. Zhou, J. Wei, J. Lou, P.M. Ajayan, ACS Nano 8 (2014) 6297-6303.
DOI URL |
[73] |
Z. Li, L. Yin, J. Mater. Chem. A 3 (2015) 21569-21577.
DOI URL |
[74] |
X. Ge, Z. Li, C. Wang, L. Yin, ACS Appl. Mater. Interfaces 7 (2015) 26633-26642.
DOI URL |
[75] |
J.L. Niu, C.H. Zeng, H.J. Peng, X.M. Lin, P. Sathishkumar, Y.P. Cai, Small 13 (2017) 1702150.
DOI URL |
[76] |
J. Du, Y. Tang, Y. Wang, P. Shi, J. Fan, Q. Xu, Y. Min, Dalton Trans 47 (2018) 7571-7577.
DOI URL |
[77] |
Y. Han, J. Li, T. Zhang, P. Qi, S. Li, X. Gao, J. Zhou, X. Feng, B. Wang, Chem. Eur. J. 24 (2018) 1651-1656.
DOI URL |
[78] |
T. Liu, W. Wang, M. Yi, Q. Chen, C. Xu, D. Cai, H. Zhan, Chem. Eng. J. 354 (2018) 454-462.
DOI URL |
[79] |
H. Li, M. Liang, W. Sun, Y. Wang, Adv. Funct. Mater. 26 (2016) 1098-1103.
DOI URL |
[80] |
L.L. Wu, Z. Wang, Y. Long, J. Li, Y. Liu, Q.S. Wang, X. Wang, S.Y. Song, X. Liu, H.J. Zhang, Small 13 (2017) 1604270.
DOI URL |
[81] |
Z. Jia, Y. Tan, Z. Cui, L. Zhang, X. Guo, J. Mater. Chem. A 6 (2018) 19604-19610.
DOI URL |
[82] |
Y. Kuang, C. Chen, K. Li, B. Hao, J. Ma, Y. Liao, H. Mao, F. Huo, Nanoscale 11 (2019) 15166-15172.
DOI URL |
[83] |
L. Hou, X. Jiang, Y. Jiang, T. Jiao, R. Cui, S. Deng, J. Gao, Y. Guo, F. Gao, ACS Omega 4 (2019) 7565-7573.
DOI URL PMID |
[84] |
H. Yang, Y. Xie, M. Zhu, Y. Liu, Z. Wang, M. Xu, S. Lin, Dalton Trans 48 (2019) 9205-9213.
DOI URL |
[85] |
V. Soundharrajan, B. Sambandam, J. Song, S. Kim, J. Jo, P.T. Duong, S. Kim, V. Mathew, J. Kim, J. Colloid Interface Sci. 501 (2017) 133-141.
DOI URL |
[86] |
M. Zhong, D.H. Yang, L.J. Kong, W. Shuang, Y.H. Zhang, X.H. Bu, Dalton Trans 46 (2017) 15947-15953.
DOI URL PMID |
[87] |
C. Wang, H. Su, Y. Ma, D. Yang, Y. Dong, D. Li, L. Wang, Y. Liu, J. Zhang, ACS Appl. Mater. Interfaces 10 (2018) 28679-28685.
DOI URL |
[88] |
J. Li, D. Wang, J. Zhou, L. Hou, F. Gao, J. Alloys Compd. 793 (2019) 247-258.
DOI URL |
[89] | X. Zhao, H. Xu, Z. Hui, Y. Sun, C. Yu, J. Xue, R. Zhou, L. Wang, H. Dai, Y. Zhao, J. Yang, J. Zhou, Q. Chen, G. Sun, W. Huang, Small 15 (2019) e1904255. |
[90] |
W. Liang, S. He, L. Quan, L. Wang, M. Liu, Y. Zhao, X. Lai, J. Bi, D. Gao, W. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 42139-42148.
DOI URL |
[91] |
Y. Wang, J. Wu, Y. Tang, X. Lu, C. Yang, M. Qin, F. Huang, X. Li, X. Zhang, ACS Appl. Mater. Interfaces 4 (2012) 4246-4250.
DOI URL |
[92] |
R. Wu, D.P. Wang, X. Rui, B. Liu, K. Zhou, A.W. Law, Q. Yan, J. Wei, Z. Chen, Adv. Mater. 27 (2015) 3038-3044.
DOI URL |
[93] |
H. Li, Y. Su, W. Sun, Y. Wang, Adv. Funct. Mater. 26 (2016) 8345-8353.
DOI URL |
[94] |
D. Yin, G. Huang, F. Zhang, Y. Qin, Z. Na, Y. Wu, L. Wang, Chem. Eur. J. 22 (2016) 1467-1474.
DOI URL |
[95] |
L. Yu, J.F. Yang, X.W. Lou, Angew. Chem. Int. Ed. 55 (2016) 13422-13426.
DOI URL |
[96] |
P. Zeng, J. Li, M. Ye, K. Zhuo, Z. Fang, Chem. Eur. J. 23 (2017) 9517-9524.
DOI URL |
[97] |
Y. Zhao, M. Bi, F. Qian, P. Zeng, M. Chen, R. Wang, Y. Liu, Y. Ding, Z. Fang, ChemElectroChem 5 (2018) 3953-3960.
DOI URL |
[98] |
H. Li, P. Wu, Y. Xiao, M. Shao, Y. Shen, Y. Fan, H. Chen, R. Xie, W. Zhang, S. Li, J. Wu, Y. Fu, B. Zheng, W. Zhang, F. Huo, Angew. Chem. Int. Ed. 59 (2020) 4763-4769.
DOI URL |
[99] |
L. Chen, N. Luo, S. Huang, Y. Li, M. Wei, Chem. Commun. 56 (2020) 3951-3954.
DOI URL |
[100] |
F. Xiao, X. Yang, D. Wang, H. Wang, D.Y.W. Yu, A.L. Rogach, ACS Appl. Mater. Interfaces 12 (2020) 12809-12820.
DOI URL |
[101] |
T. Yang, D. Yang, Y. Liu, J. Liu, Y. Chen, L. Bao, X. Lu, Q. Xiong, H. Qin, Z. Ji, C.D. Ling, R. Zheng, Electrochim. Acta 290 (2018) 193-202.
DOI URL |
[102] | Y. Han, W. Li, K. Zhou, X. Wu, H. Wu, X. Wu, Q. Shi, G. Diao, M. Chen, Chem- NanoMat 6 (2019) 132-138. |
[103] |
R. Tian, Y. Zhou, H. Duan, Y. Guo, H. Li, K. Chen, D. Xue, H. Liu, ACS Appl. Energy Mater. 1 (2018) 402-410.
DOI URL |
[104] |
M.K. Aslam, S.S.A. Shah, S. Li, C. Chen, J. Mater. Chem. A 6 (2018) 14083-14090.
DOI URL |
[105] |
D. Yang, Y. Ma, C. Wang, H. Su, W. Zhang, D. Li, Y. Liu, J. Zhang, ChemElectroChem 6 (2019) 2331-2337.
DOI URL |
[106] |
M. Yi, C. Zhang, C. Cao, C. Xu, B. Sa, D. Cai, H. Zhan, Inorg. Chem. 58 (2019) 3916-3924.
DOI URL |
[107] |
P. Wang, P. Zhang, X. Zheng, J. Cao, Y. Liu, J. Feng, J. Qi, Dalton Trans. 49 (2020) 1167-1172.
DOI URL |
[108] |
H. Hu, J. Zhang, B. Guan, X.W. Lou, Angew. Chem. Int. Ed. 55 (2016) 9514-9518.
DOI URL |
[109] |
J. Yang, H. Gao, S. Men, Z. Shi, Z. Lin, X. Kang, S. Chen, Adv. Sci. 5 (2018) 1800763.
DOI URL |
[110] |
K. Zhou, Y. Han, D. Tang, H. Wu, X. Wu, G. Diao, H. Li, M. Chen, Adv. Mater. Interfaces 7 (2019) 1901699.
DOI URL |
[111] |
W. Liu, M. Shao, W. Zhou, B. Yuan, C. Gao, H. Li, X. Xu, H. Chu, Y. Fan, W. Zhang, S. Li, J. Hui, D. Fan, F. Huo, ACS Appl. Mater. Interfaces 10 (2018) 38845-38852.
DOI URL |
[112] |
M. Yi, A. Wu, Q. Chen, D. Cai, H. Zhan, Chem. Eng. J. 351 (2018) 678-687.
DOI URL |
[113] |
Z. Zhang, J. Yang, Y. Nuli, B. Wang, J. Xu, Solid State Ionics 176 (2005) 693-697.
DOI URL |
[114] |
G. Xia, J. Su, M. Li, P. Jiang, Y. Yang, Q. Chen, J. Mater. Chem. A 5 (2017) 10321-10327.
DOI URL |
[115] | Y. Liu, X. Que, X. Wu, Q. Yuan, H. Wang, J. Wu, Y. Gui, W. Gan, Mater. Today Chem. 17 (2020) 100284. |
[116] |
K. Zhu, J. Liu, S. Li, L. Liu, L. Yang, S. Liu, H. Wang, T. Xie, Adv. Mater. Interfaces 4 (2017) 1700377.
DOI URL |
[117] |
S. Sun, T. Xie, S. Tao, P. Sheng, Z. Han, B. Qian, X. Jiang, Energy Technol. 8 (2019) 1901089.
DOI URL |
[118] |
C. Yao, J. Xu, Y. Zhu, R. Zhang, Y. Shen, A. Xie, Appl. Surf. Sci. 513 (2020) 145777.
DOI URL |
[119] |
S. Huang, S. Fan, L. Xie, Q. Wu, D. Kong, Y. Wang, Y.V. Lim, M. Ding, Y. Shang, S. Chen, H.Y. Yang, Adv. Energy Mater. 9 (2019) 1901584.
DOI URL |
[120] |
S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2 (2012) 710-721.
DOI URL |
[121] |
J. Chen, Q. Ru, Y. Mo, S. Hu, X. Hou, Phys. Chem. Chem. Phys. 18 (2016) 18949-18957.
DOI URL |
[122] |
C. Dong, L. Xu, ACS Appl. Mater. Interfaces 9 (2017) 7160-7168.
DOI URL |
[123] |
Y. Ma, Y. Ma, D. Bresser, Y. Ji, D. Geiger, U. Kaiser, C. Streb, A. Varzi, S. Passerini, ACS Nano 12 (2018) 7220-7231.
DOI URL |
[124] |
X. Gu, P. Dai, L. Li, J. Li, D. Li, H. Zhang, X. Zhao, ChemistrySelect 1 (2016) 6442-6447.
DOI URL |
[125] | D. Skoda, T. Kazda, L. Munster, B. Hanulikova, A. Styskalik, P. Eloy, D.P. Debecker, J. Vilcakova, O. Cech, L. Simonikova, V. Kanicky, I. Kuritka, J. Storage Mater. 27 (2020) 101113. |
[126] |
Y. Zhang, Q. Su, W. Xu, G. Cao, Y. Wang, A. Pan, S. Liang, Adv. Sci. 6 (2019) 1900162.
DOI URL |
[127] |
W. Zhong, X. Lv, Q. Chen, M. Ren, W. Liu, G. Li, J. Yu, M. Li, Y. Dai, L. Wang, ACS Appl. Mater. Interfaces 11 (2019) 37850-37858.
DOI URL |
[128] |
Y. Wang, C. Wang, Y. Wang, H. Liu, Z. Huang, J. Mater. Chem. A 4 (2016) 5428-5435.
DOI URL |
[129] |
H. Xu, G. Zhu, B. Hao, J. Mater. Sci. Technol. 35 (2019) 100-108.
DOI URL |
[130] |
Y.V. Kaneti, J. Zhang, Y.-B. He, Z. Wang, S. Tanaka, M.S.A. Hossain, Z.Z. Pan, B. Xiang, Q.H. Yang, Y. Yamauchi, J. Mater. Chem. A 5 (2017) 15356-15366.
DOI URL |
[131] |
Z. Chen, R. Wu, M. Liu, H. Wang, H. Xu, Y. Guo, Y. Song, F. Fang, X. Yu, D. Sun, Adv. Funct. Mater. 27 (2017) 1702046.
DOI URL |
[132] |
Y. Jiang, G. Zou, W. Hong, Y. Zhang, Y. Zhang, H. Shuai, W. Xu, H. Hou, X. Ji, Nanoscale 10 (2018) 18786-18794.
DOI URL |
[133] |
X. Liu, F. Zou, K. Liu, Z. Qiang, C.J. Taubert, P. Ustriyana, B.D. Vogt, Y. Zhu, J. Mater. Chem. A 5 (2017) 11781-11787.
DOI URL |
[134] |
G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao, T. Lin, Y. Chen, C. Wang, A. Pan, S. Liang, Adv. Energy Mater. 8 (2018) 1703155.
DOI URL |
[135] |
S.H. Yang, S.K. Park, J.K. Kim, Y.C. Kang, J. Mater. Chem. A 7 (2019) 13751-13761.
DOI URL |
[136] |
S.K. Park, J.K. Kim, Y.C. Kang, Chem. Eng. J. 328 (2017) 546-555.
DOI URL |
[137] |
S.K. Park, J.K. Kim, Y.Chan Kang, J. Mater. Chem. A 5 (2017) 18823-18830.
DOI URL |
[138] | B.H. Hou, Y.Y. Wang, D.S. Liu, Z.Y. Gu, X. Feng, H. Fan, T. Zhang, C. Lü, X.L. Wu, Adv. Funct. Mater. 28 (2018) 1805444. |
[139] |
X. Huang, S. Men, H. Zheng, D.D. Qin, X. Kang, Chem. Asian J. 15 (2020) 1456-1463.
DOI URL |
[140] |
C. Guo, W. Zhang, Y. Liu, J. He, S. Yang, M. Liu, Q. Wang, Z. Guo, Adv. Funct. Mater. 29 (2019) 1901925.
DOI URL |
[141] |
S. Hao, H. Li, Z. Zhao, X. Wang, ChemElectroChem 6 (2019) 5712-5720.
DOI URL |
[142] | K. Zou, W. Deng, P. Cai, X. Deng, B. Wang, C. Liu, J. Li, H. Hou, G. Zou, X. Ji, Adv. Funct. Mater. (2020) 31. |
[143] |
W. Hu, Y. Hirota, Y. Zhu, N. Yoshida, M. Miyamoto, T. Zheng, N. Nishiyama, ChemSusChem 10 (2017) 3557-3564.
DOI URL |
[144] |
J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M.H. Engelhard, J.G. Zhang, J. Liu, J. Xiao, Nano Lett. 14 (2014) 2345-2352.
DOI URL |
[145] |
Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang, Q. Li, C. Wang, L. Yin, Nano Energy 23 (2016) 15-26.
DOI URL |
[146] |
Y.J. Li, J.M. Fan, M.S. Zheng, Q.F. Dong, Energy Environ. Sci. 9 (2016) 1998-2004.
DOI URL |
[147] |
K. Xiao, J. Wang, Z. Chen, Y. Qian, Z. Liu, L. Zhang, X. Chen, J. Liu, X. Fan, Z.X. Shen, Small 15 (2019) 1901454.
DOI URL |
[148] |
S. Luo, W. Sun, J. Ke, Y. Wang, S. Liu, X. Hong, Y. Li, Y. Chen, W. Xie, C. Zheng, Nanoscale 10 (2018) 22601-22611.
DOI URL |
[149] |
D. Fang, Y. Wang, C. Qian, X. Liu, X. Wang, S. Chen, S. Zhang, Adv. Funct. Mater. 29 (2019) 1900875.
DOI URL |
[150] |
R. Liu, Z. Liu, W. Liu, Y. Liu, X. Lin, Y. Li, P. Li, Z. Huang, X. Feng, L. Yu, D. Wang, Y. Ma, W. Huang, Small 15 (2019) 1804533.
DOI URL |
[151] |
Y. Zhang, M. Li, S. Zhong, Y. Sui, X. Zhang, X. Li, L. Wu, Ceram. Int. 46 (2020) 9614-9621.
DOI URL |
[152] | Y. Li, G. Chen, J. Mou, Y. Liu, S. Xue, T. Tan, W. Zhong, Q. Deng, T. Li, J. Hu, C. Yang, K. Huang, M. Liu, Energy Storage Mater. 28 (2020) 196-204. |
[153] |
K. Chen, Z. Sun, R. Fang, Y. Shi, H.M. Cheng, F. Li, Adv. Funct. Mater. 28 (2018) 1707592.
DOI URL |
[154] | F. Yu, Z. He, S. Qiang, J. Alloys Compd. (2018) 843-851. |
[155] |
J. Xu, W. Zhang, Y. Chen, H. Fan, D. Su, G. Wang, J. Mater. Chem. A 6 (2018) 2797-2807.
DOI URL |
[156] | L. Zhou, H. Li, X. Wu, Y. Zhang, D.L. Danilov, R.A. Eichel, P.H.L. Notten, ACS Appl.Energy Mater. 2 (2019) 8153-8162. |
[157] |
W.W. Jin, J.Z. Zou, S.Z. Zeng, S. Inguva, G.Z. Xu, X.H. Li, M. Peng, X.R. Zeng, Appl. Surf. Sci. 469 (2019) 404-413.
DOI URL |
[158] |
X. Zhang, Y. Fan, M.A. Khan, H. Zhao, D. Ye, J. Wang, B. Yue, J. Fang, J. Xu, L. Zhang, J. Zhang, Batteries Supercaps 3 (2019) 108-116.
DOI URL |
[159] |
Z. Zhang, S. Zhou, T. Mei, Y. Gou, F. Xie, C. Liu, X. Wang, Dalton Trans. 49 (2020) 8591-8600.
DOI URL |
[160] |
J. He, Y. Chen, A. Manthiram, iScience 4 (2018) 36-43.
DOI URL |
[161] |
S. Seung Deok, D. Park, S. Park, K. Dong Wan, Adv. Funct. Mater. 29 (2019) 1903712.
DOI URL |
[162] |
Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu, R. Hu, L. Yang, Y. Feng, J. Liu, Z. Shi, L. Ouyang, Y. Yu, M. Zhu, Adv. Mater. 31 (2019) 1970236.
DOI URL |
[163] |
T. Zhou, J. Shen, Z. Wang, J. Liu, R. Hu, L. Ouyang, Y. Feng, H. Liu, Y. Yu, M. Zhu, Adv. Funct. Mater. 30 (2020) 1909159.
DOI URL |
[164] |
C. Zhao, S. Xiong, H. Li, Z. Li, C. Qi, H. Yang, L. Wang, Y. Zhao, T. Liu, J. Power Sources 483 (2021) 229188.
DOI URL |
[165] | G. Jiang, N. Jiang, N. Zheng, X. Chen, J. Mao, G. Ding, Y. Li, F. Sun, Y. Li, Energy Storage Mater. 23 (2019) 181-189. |
[166] |
Z. Zhou, Y. Li, T. Fang, Y. Zhao, Q. Wang, J. Zhang, Z. Zhou, Nanomaterials 9 (2019) 1574.
DOI URL |
[167] |
D. Xue, C. Li, P. Wei, S. Zhao, F. Yu, Y. Yang, ChemElectroChem 7 (2019) 421-427.
DOI URL |
[168] |
S. Yang, X. Xue, J. Zhang, X. Liu, C. Dai, Q. Xu, J. Lian, Y. Zhao, G. Li, H. Li, S. Yuan, Chem. Eng. J. 395 (2020) 125064.
DOI URL |
[169] |
Y.-J. Wang, B. Fang, D. Zhang, A. Li, D.P. Wilkinson, A. Ignaszak, L. Zhang, J. Zhang, Electrochem. Energy Rev. 1 (2018) 1-34.
DOI URL |
[170] |
H.B. Aiyappa, S.N. Bhange, V.P. Sivasankaran, S. Kurungot, ChemElectroChem 4 (2017) 2928-2933.
DOI URL |
[171] |
J.C. Li, X.T. Wu, L.J. Chen, N. Li, Z.Q. Liu, Energy 156 (2018) 95-102.
DOI URL |
[172] | D. Chen, J. Yu, Z. Cui, Q. Zhang, X. Chen, J. Sui, H. Dong, L. Yu, L. Dong, Elec- trochim. Acta 331 (2020) 135394. |
[173] | D. Ji, L. Fan, L. Li, S. Peng, D. Yu, J. Song, S. Ramakrishna, S. Guo, Adv. Mater. 31 (2019) e1808267. |
[174] | L. Gao, S. Chen, R. Cai, Q. Zhao, X. Zhao, D. Yang, Glob. Chall. 2 (2018) 1700086. |
[175] |
M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Adv. Mater. 30 (2018) 1705431.
DOI URL |
[176] |
H. Han, S. Chao, Z. Bai, X. Wang, X. Yang, J. Qiao, Z. Chen, L. Yang, ChemElectroChem 5 (2018) 1868-1873.
DOI URL |
[177] |
D. Yu, P.R. Ilango, S. Han, M. Ye, Y. Hu, L. Li, S. Peng, Int. J. Hydrogen Energy 44 (2019) 32054-32065.
DOI URL |
[178] |
Y. Kuk, S. Ahmed, H.J. Sun, J. Shim, G. Park, Bull. Korean Chem. Soc. 41 (2020) 310-316.
DOI URL |
[179] |
T. Wang, Z. Kou, S. Mu, J. Liu, D. He, I.S. Amiinu, W. Meng, K. Zhou, Z. Luo, S. Chaemchuen, F. Verpoort, Adv. Funct. Mater. 28 (2018) 1705048.
DOI URL |
[180] |
J. Zhang, C. Wu, M. Huang, Y. Zhao, J. Li, L. Guan, ChemCatChem 10 (2018) 1336-1343.
DOI URL |
[181] |
X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong, W. Hu, Y. Deng, Angew. Chem. Int. Ed. 58 (2019) 5359-5364.
DOI URL |
[182] |
L. Liu, Y. Wang, F. Yan, C. Zhu, B. Geng, Y. Chen, S.l. Chou, Small Methods 4 (2019) 1900571.
DOI URL |
[183] | P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu, J. Ma, X. Wang, C. Tian, J. Li, H. Fu, Adv. Mater. 31 (2019) e1901666. |
[184] |
S. Cai, R. Wang, W.M. Yourey, J. Li, H. Zhang, H. Tang, Sci. Bull. 64 (2019) 968-975.
DOI URL |
[185] |
A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan, H. Liu, M.A. Salam, B.Y. Xia, Adv. Mater. 32 (2020) 2002170.
DOI URL |
[186] |
B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen, H. Yin, Adv. Funct. Mater. 27 (2017) 1700795.
DOI URL |
[187] | X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W.D. Lou, Adv.Mater. 31 (2019) 1902339. |
[188] |
S. Ahmed, J. Shim, H.J. Sun, G. Park, Phys. Status Solidi A 217 (2020) 1900969.
DOI URL |
[189] |
A. Asokan, H. Lee, O. Gwon, J. Kim, O. Kwon, G. Kim, ChemElectroChem 6 (2019) 1213-1224.
DOI URL |
[190] |
D. Ren, J. Ying, M. Xiao, Y.P. Deng, J. Ou, J. Zhu, G. Liu, Y. Pei, S. Li, A.M. Jauhar, H. Jin, S. Wang, D. Su, A. Yu, Z. Chen, Adv. Funct. Mater. 30 (2019) 1908167.
DOI URL |
[191] |
M. Huo, B. Wang, C. Zhang, S. Ding, H. Yuan, Z. Liang, J. Qi, M. Chen, Y. Xu, W. Zhang, H. Zheng, R. Cao, Chem. Eur. J. 25 (2019) 12780-12788.
DOI URL |
[192] |
C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu, H. Zhang, Z. Liu, C. Cheng, S.J. Pennycook, J. Wang, Adv. Mater. 29 (2017) 1704117.
DOI URL |
[193] | Y. Zhong, Z. Pan, X. Wang, J. Yang, Y. Qiu, S. Xu, Y. Lu, Q. Huang, W. Li, Adv. Sci. (2019) 1802243. |
[194] |
Y. Jiang, Y.P. Deng, J. Fu, D.U. Lee, R. Liang, Z.P. Cano, Y. Liu, Z. Bai, S. Hwang, L. Yang, D. Su, W. Chu, Z. Chen, Adv. Energy Mater. 8 (2018) 1702900.
DOI URL |
[195] |
M. Khalid, A.M.B. Honorato, H. Varela, L. Dai, Nano Energy 45 (2018) 127-135.
DOI URL |
[196] |
X. Yi, X. He, F. Yin, B. Chen, G. Li, H. Yin, Electrochim. Acta 295 (2019) 966-977.
DOI URL |
[197] |
Z. Bai, J. Heng, Q. Zhang, L. Yang, F. Chang, Adv. Energy Mater. 8 (2018) 1802390.
DOI URL |
[198] |
L. Zhu, D. Zheng, Z. Wang, X. Zheng, P. Fang, J. Zhu, M. Yu, Y. Tong, X. Lu, Adv. Mater. 30 (2018) 1805268.
DOI URL |
[199] |
L. Li, L. Fu, R. Wang, J. Sun, X. Li, C. Fu, L. Fang, W. Zhang, Electrochim. Acta 344 (2020) 136145.
DOI URL |
[200] |
H. Yang, B. Wang, H. Li, B. Ni, K. Wang, Q. Zhang, X. Wang, Adv. Energy Mater. 8 (2018) 1801839.
DOI URL |
[201] | S. Agarwal, X. Yu, A. Manthiram, Mater. Today Energy 16 (2020) 100405. |
[202] |
L. Feng, R. Ding, Y. Chen, J. Wang, L. Xu, J. Power Sources 452 (2020) 227837.
DOI URL |
[203] |
Y. Lian, K. Shi, H. Yang, H. Sun, P. Qi, J. Ye, W. Wu, Z. Deng, Y. Peng, Small 16 (2020) 1907368.
DOI URL |
[204] |
J. Bai, B. Xi, H. Mao, Y. Lin, X. Ma, J. Feng, S. Xiong, Adv. Mater. 30 (2018) 1802310.
DOI URL |
[205] |
P. Xiong, X. Zhao, Y. Xu, ChemSusChem 11 (2018) 202-208.
DOI URL |
[206] |
W. Miao, Y. Zhang, H. Li, Z. Zhang, L. Li, Z. Yu, W. Zhang, J. Mater. Chem. A 7 (2019) 5504-5512.
DOI URL |
[207] |
Z. Sun, X.L. Wu, J. Xu, D. Qu, B. Zhao, Z. Gu, W. Li, H. Liang, L. Gao, Y. Fan, K. Zhou, D. Han, S. Gan, Y. Zhang, L. Niu, Small 16 (2020) 1907670.
DOI URL |
[208] |
Y. Hu, D. Ye, B. Luo, H. Hu, X. Zhu, S. Wang, L. Li, S. Peng, L. Wang, Adv. Mater. 30 (2018) 1703824.
DOI URL |
[209] |
C. Li, S. Dong, P. Wang, C. Wang, L. Yin, Adv. Energy Mater. 9 (2019) 1902352.
DOI URL |
[210] | X. Xiao, M. Wang, J. Tu, Y. Luo, S. Jiao, ACS Sustain, ACS Sustainable Chem. Eng. 7 (2019) 16200-16208. |
[211] |
B. Zhang, Y. Zhang, J. Li, J. Liu, X. Huo, F. Kang, J. Mater. Chem. A 8 (2020) 5535-5545.
DOI URL |
[212] | T. Yang, Y. Qi, W. Zhong, M. Tao, B. Guo, Y. Wu, S.J. Bao, M. Xu, Adv. Funct. Mater. (2020) 2001952. |
[213] |
J. He, W. Lv, Y. Chen, J. Xiong, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, J. Power Sources 363 (2017) 103-109.
DOI URL |
[214] |
J.P. Song, L. Wu, W.D. Dong, C.F. Li, L.H. Chen, X. Dai, C. Li, H. Chen, W. Zou, W.B. Yu, Z.Y. Hu, J. Liu, H.E. Wang, Y. Li, B.L. Su, Nanoscale 11 (2019) 6970-6981.
DOI URL |
[215] |
M.J. Song, I.T. Kim, Y.B. Kim, J. Kim, M.W. Shin, Electrochim. Acta 230 (2017) 73-80.
DOI URL |
[216] |
X. Chen, C. Chen, X. Zhang, T. Huang, A. Yu, ChemistrySelect 3 (2018) 9276-9283.
DOI URL |
[217] |
Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang, C. Guan, J. Ding, W. Chen, J. Wang, Adv. Funct. Mater. 29 (2019) 1806658.
DOI URL |
[218] |
R. Liang, A. Hu, M. Li, Z. Ran, C. Shu, J. Long, J. Alloys Compd. 810 (2019) 151877.
DOI URL |
[219] |
J. Li, Y. Deng, L. Leng, M. Liu, L. Huang, X. Tian, H. Song, X. Lu, S. Liao, J. Power Sources 450 (2020) 227725.
DOI URL |
[220] |
A. Chatterjee, S.W. Or, Electrochim. Acta 338 (2020) 135809.
DOI URL |
[1] | Cheng-Fei Cao, Wen-Jun Liu, Hui Xu, Ke-Xin Yu, Li-Xiu Gong, Bi-Fan Guo, Yu-Tong Li, Xiao-Lan Feng, Ling-Yu Lv, Hong-Tao Pan, Li Zhao, Jia-Yun Li, Jie-Feng Gao, Guo-Dong Zhang, Long-Cheng Tang. Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives [J]. J. Mater. Sci. Technol., 2021, 85(0): 194-204. |
[2] | Mingshi Yu, Guancheng Wang, Rongrong Zhao, Enze Liu, Tonglai Chen. Improved interfacial wetability in Cu/ZnO and its role in ZnO/Cu/ZnO sandwiched transparent electrodes [J]. J. Mater. Sci. Technol., 2020, 37(0): 123-127. |
[3] | S.S. Batool, Z. Imran, M. Israr Qadir, M. Usman, H. Jamil, M.A. Rafiq, M.M. Hassan,M. Willander. Comparative Analysis of Ti, Ni, and Au Electrodes on Characteristics of TiO2 Nanofibers for Humidity Sensor Application [J]. J. Mater. Sci. Technol., 2013, 29(5): 411-414. |
[4] | Xinhua Zhu,Jian-min Zhu,Aidong Li,Zhiguo Liu,Naiben Ming. Challenges in Atomic-Scale Characterization of High-k Dielectrics and Metal Gate Electrodes for Advanced CMOS Gate Stacks [J]. J Mater Sci Technol, 2009, 25(03): 289-313. |
[5] | Minghuan WANG, Di ZHU, Lei WANG. Preparation of Electrode Array by Electrochemical Etching Based on FEM [J]. J Mater Sci Technol, 2008, 24(06): 845-849. |
[6] | Zhiqiang ZHANG, Ren HE, Peng LEI, Yan GAO, Haijun CHI, Zhizhi HU. Synthesis and Characterization of Some Substituted Arylimidazole Derivatives [J]. J Mater Sci Technol, 2004, 20(Supl.): 129-132. |
[7] | A.A.Taha, M.G.Marei, D.E.Abd El-khalek. Effect of Some Heterocyclic Derivatives on the Removal of Copper Ions from Wastewater by Cementation [J]. J Mater Sci Technol, 2004, 20(05): 539-546. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||