J. Mater. Sci. Technol. ›› 2021, Vol. 95: 237-248.DOI: 10.1016/j.jmst.2021.03.074
• Research Article • Previous Articles
Ling Rena,1, Xiaohe Xub,1, Hui Liua,c, Ke Yanga,*(), Xun Qid,*(
)
Received:
2021-03-03
Revised:
2021-03-25
Accepted:
2021-03-29
Published:
2021-12-30
Online:
2021-05-25
Contact:
Ke Yang,Xun Qi
About author:
qixun716@hotmail.com (X. Qi).1These authors contributed equally to this work.
Ling Ren, Xiaohe Xu, Hui Liu, Ke Yang, Xun Qi. Biocompatibility and Cu ions release kinetics of copper-bearing titanium alloys[J]. J. Mater. Sci. Technol., 2021, 95: 237-248.
Experiments | Samples | Size | Extract medium | Conditions |
---|---|---|---|---|
MTT assay | Ti6Al4V-Cu | Φ11.25 mm × 1.37mm | 89% MEM, 10% FBS, and 1% p/s | 37 °C, 60 rpm, 24 h |
TiCu | Φ10.00 mm × 1.05mm | |||
In vitro mammalian TK gene mutation assay | Ti6Al4V-Cu | Φ10.00 mm × 1.00mm | Polar: RPMI 1640 Non-polar: DMSO | 37 °C, 60 rpm, 72 h |
TiCu | Φ10.00 mm × 1.00mm | |||
In vitro mammalian chromosome aberration assay | Ti6Al4V-Cu | Φ10.00 mm × 1.00mm | Polar: RPMI 1640 Non-polar: DMSO | 37 °C, 60 rpm, 72 h |
TiCu | Φ10.00 mm × 1.00mm | |||
Bacterial reverse mutation assay (Ames test) | Ti6Al4V-Cu | Φ10.00 mm × 1.00mm | Polar: Normal Saline Non-polar: cottonseed oil | 121 °C, 1 h |
TiCu | Φ10.00 mm × 1.00mm | |||
Acute systemic toxicity assay | Ti6Al4V-Cu | Φ11.25 mm × 1.37mm | Polar: Normal Saline | |
Non-polar: cottonseed oil | 121 °C, 1 h | |||
TiCu | Φ10.00 mm × 1.05mm | |||
Subchronic systemic toxicity assay | Ti6Al4V-Cu | Φ10.50 mm × 2.20mm | Polar: Normal Saline Non-polar: sesame oil | 37 °C, 60 rpm, 72 h |
TiCu | Φ11.50 mm × 2.20mm | |||
Skin irritation study | Ti6Al4V-Cu | Φ10.00 mm × 1.00mm | Polar: Normal Saline Non-polar: cottonseed oil | 37 °C, 60 rpm, 72 h |
TiCu | Φ10.00 mm × 1.05mm | |||
Skin sensitization study | Ti6Al4V-Cu | Φ10.18 mm × 1.37mm | Polar: Normal Saline Non-polar: cottonseed oil | 121 °C, 1 h |
TiCu | Φ11.14 mm × 2.08mm | |||
Pyrogen assay | Ti6Al4V-Cu | Φ10.50 mm × 1.90mm | Normal Saline | 37 °C, 60 rpm, 72 h |
TiCu | Φ11.46 mm × 2.13mm |
Table 1 The sample preparation information.
Experiments | Samples | Size | Extract medium | Conditions |
---|---|---|---|---|
MTT assay | Ti6Al4V-Cu | Φ11.25 mm × 1.37mm | 89% MEM, 10% FBS, and 1% p/s | 37 °C, 60 rpm, 24 h |
TiCu | Φ10.00 mm × 1.05mm | |||
In vitro mammalian TK gene mutation assay | Ti6Al4V-Cu | Φ10.00 mm × 1.00mm | Polar: RPMI 1640 Non-polar: DMSO | 37 °C, 60 rpm, 72 h |
TiCu | Φ10.00 mm × 1.00mm | |||
In vitro mammalian chromosome aberration assay | Ti6Al4V-Cu | Φ10.00 mm × 1.00mm | Polar: RPMI 1640 Non-polar: DMSO | 37 °C, 60 rpm, 72 h |
TiCu | Φ10.00 mm × 1.00mm | |||
Bacterial reverse mutation assay (Ames test) | Ti6Al4V-Cu | Φ10.00 mm × 1.00mm | Polar: Normal Saline Non-polar: cottonseed oil | 121 °C, 1 h |
TiCu | Φ10.00 mm × 1.00mm | |||
Acute systemic toxicity assay | Ti6Al4V-Cu | Φ11.25 mm × 1.37mm | Polar: Normal Saline | |
Non-polar: cottonseed oil | 121 °C, 1 h | |||
TiCu | Φ10.00 mm × 1.05mm | |||
Subchronic systemic toxicity assay | Ti6Al4V-Cu | Φ10.50 mm × 2.20mm | Polar: Normal Saline Non-polar: sesame oil | 37 °C, 60 rpm, 72 h |
TiCu | Φ11.50 mm × 2.20mm | |||
Skin irritation study | Ti6Al4V-Cu | Φ10.00 mm × 1.00mm | Polar: Normal Saline Non-polar: cottonseed oil | 37 °C, 60 rpm, 72 h |
TiCu | Φ10.00 mm × 1.05mm | |||
Skin sensitization study | Ti6Al4V-Cu | Φ10.18 mm × 1.37mm | Polar: Normal Saline Non-polar: cottonseed oil | 121 °C, 1 h |
TiCu | Φ11.14 mm × 2.08mm | |||
Pyrogen assay | Ti6Al4V-Cu | Φ10.50 mm × 1.90mm | Normal Saline | 37 °C, 60 rpm, 72 h |
TiCu | Φ11.46 mm × 2.13mm |
Sample | Extract Liquid | S9 | Time point | Index | Negative control | 25% | 50% | 100% | Positive control |
---|---|---|---|---|---|---|---|---|---|
Ti6Al4V-Cu | polar | - | 4h | RTG | 100.0 | 52.5 | 74.0 | 38.8 | 100.0 |
MF(× 10-6) | 141.2 | 149.4 | 98.6 | 122.3 | 515.3 | ||||
24h | RTG | 100.0 | 78.0 | 63.5 | 96.0 | 44.7 | |||
MF(× 10-6) | 174.5 | 157.5 | 104.1 | 100.9 | 470.7 | ||||
+ | 4h | RTG | 100.0 | 64.8 | 65.6 | 71.1 | 55.5 | ||
MF(× 10-6) | 156.0 | 132.5 | 129.2 | 147.1 | 411.4 | ||||
Non-polar | - | 4h | RTG | 100.0 | 55.8 | 58.8 | 48.5 | 39.4 | |
MF(× 10-6) | 129.5 | 132.7 | 89.1 | 100.9 | 529.4 | ||||
24h | RTG | 100.0 | 108.3 | 113.5 | 104.9 | 42.4 | |||
MF(× 10-6) | 117.0 | 165.4 | 123.1 | 176.6 | 435.1 | ||||
+ | 4h | RTG | 100.0 | 46.5 | 35.7 | 122.3 | 36.5 | ||
MF(× 10-6) | 131.2 | 127.3 | 162.0 | 83.0 | 378.3 | ||||
Ti-Cu | Polar | - | 4h | RTG | 100.0 | 82.1 | 87.5 | 68.3 | 44.4 |
MF(× 10-6) | 151.4 | 186.4 | 233.5 | 249.3 | 532.1 | ||||
24h | RTG | 100.0 | 96.2 | 69.0 | 89.0 | 30.6 | |||
MF(× 10-6) | 102.7 | 161.3 | 139.7 | 119.5 | 452.6 | ||||
+ | 4h | RTG | 100.0 | 57.0 | 59.3 | 34.8 | 35.6 | ||
MF(× 10-6) | 150.5 | 192.1 | 119.1 | 209.7 | 622.8 | ||||
Non-polar | - | 4h | RTG | 100.0 | 87.4 | 175.8 | 152.1 | 60.8 | |
MF(× 10-6) | 130.3 | 230.0 | 193.1 | 160.0 | 473.9 | ||||
24h | RTG | 100.0 | 193.9 | 188.4 | 171.0 | 85.9 | |||
MF(× 10-6) | 121.5 | 167.7 | 135.0 | 137.0 | 465.2 | ||||
+ | 4h | RTG | 100.0 | 107.0 | 178.0 | 179.0 | 79.4 | ||
MF(× 10-6) | 170.0 | 245.8 | 180.9 | 160.0 | 565.4 |
Table 2 TK gene mutation.
Sample | Extract Liquid | S9 | Time point | Index | Negative control | 25% | 50% | 100% | Positive control |
---|---|---|---|---|---|---|---|---|---|
Ti6Al4V-Cu | polar | - | 4h | RTG | 100.0 | 52.5 | 74.0 | 38.8 | 100.0 |
MF(× 10-6) | 141.2 | 149.4 | 98.6 | 122.3 | 515.3 | ||||
24h | RTG | 100.0 | 78.0 | 63.5 | 96.0 | 44.7 | |||
MF(× 10-6) | 174.5 | 157.5 | 104.1 | 100.9 | 470.7 | ||||
+ | 4h | RTG | 100.0 | 64.8 | 65.6 | 71.1 | 55.5 | ||
MF(× 10-6) | 156.0 | 132.5 | 129.2 | 147.1 | 411.4 | ||||
Non-polar | - | 4h | RTG | 100.0 | 55.8 | 58.8 | 48.5 | 39.4 | |
MF(× 10-6) | 129.5 | 132.7 | 89.1 | 100.9 | 529.4 | ||||
24h | RTG | 100.0 | 108.3 | 113.5 | 104.9 | 42.4 | |||
MF(× 10-6) | 117.0 | 165.4 | 123.1 | 176.6 | 435.1 | ||||
+ | 4h | RTG | 100.0 | 46.5 | 35.7 | 122.3 | 36.5 | ||
MF(× 10-6) | 131.2 | 127.3 | 162.0 | 83.0 | 378.3 | ||||
Ti-Cu | Polar | - | 4h | RTG | 100.0 | 82.1 | 87.5 | 68.3 | 44.4 |
MF(× 10-6) | 151.4 | 186.4 | 233.5 | 249.3 | 532.1 | ||||
24h | RTG | 100.0 | 96.2 | 69.0 | 89.0 | 30.6 | |||
MF(× 10-6) | 102.7 | 161.3 | 139.7 | 119.5 | 452.6 | ||||
+ | 4h | RTG | 100.0 | 57.0 | 59.3 | 34.8 | 35.6 | ||
MF(× 10-6) | 150.5 | 192.1 | 119.1 | 209.7 | 622.8 | ||||
Non-polar | - | 4h | RTG | 100.0 | 87.4 | 175.8 | 152.1 | 60.8 | |
MF(× 10-6) | 130.3 | 230.0 | 193.1 | 160.0 | 473.9 | ||||
24h | RTG | 100.0 | 193.9 | 188.4 | 171.0 | 85.9 | |||
MF(× 10-6) | 121.5 | 167.7 | 135.0 | 137.0 | 465.2 | ||||
+ | 4h | RTG | 100.0 | 107.0 | 178.0 | 179.0 | 79.4 | ||
MF(× 10-6) | 170.0 | 245.8 | 180.9 | 160.0 | 565.4 |
Sample | Extract Liquid | S9 | Time point | Negative control | 25% | 50% | 100% | Positive control |
---|---|---|---|---|---|---|---|---|
Ti6Al4V-Cu | polar | - | 4h | 0% | 0% | 0.5% | 0 | 21.5% |
24h | - | 0% | 0% | 0% | - | |||
+ | 4h | 0% | 0% | 0% | 0% | 18% | ||
Non-polar | - | 4h | 0% | 0% | 0% | 0% | 20.5% | |
24h | - | 0% | 0% | 0% | - | |||
+ | 4h | 0% | 0% | 0% | 0% | 18.5% | ||
Ti-Cu | Polar | - | 4h | 0% | 0% | 0% | 0% | 0% |
24h | - | 0% | 0% | 0% | - | |||
+ | 4h | 0% | 0% | 0% | 0% | 0% | ||
Non-polar | - | 4h | 0% | 0% | 0% | 0% | 20.5% | |
24h | - | 0% | 0% | 0% | - | |||
+ | 4h | 0% | 0% | 0% | 0% | 19.5% |
Table 3 Percentages of cells with chromosomal aberrations following incubation with different concentrations of extraction media.
Sample | Extract Liquid | S9 | Time point | Negative control | 25% | 50% | 100% | Positive control |
---|---|---|---|---|---|---|---|---|
Ti6Al4V-Cu | polar | - | 4h | 0% | 0% | 0.5% | 0 | 21.5% |
24h | - | 0% | 0% | 0% | - | |||
+ | 4h | 0% | 0% | 0% | 0% | 18% | ||
Non-polar | - | 4h | 0% | 0% | 0% | 0% | 20.5% | |
24h | - | 0% | 0% | 0% | - | |||
+ | 4h | 0% | 0% | 0% | 0% | 18.5% | ||
Ti-Cu | Polar | - | 4h | 0% | 0% | 0% | 0% | 0% |
24h | - | 0% | 0% | 0% | - | |||
+ | 4h | 0% | 0% | 0% | 0% | 0% | ||
Non-polar | - | 4h | 0% | 0% | 0% | 0% | 20.5% | |
24h | - | 0% | 0% | 0% | - | |||
+ | 4h | 0% | 0% | 0% | 0% | 19.5% |
Fig. 3. The numbers of revenant colonies of each strain per dose. (A) and (B): cottonseed oil, (C) and (D): normal saline; hollow: without S9, solid: with S9; red: Ti6Al4V-Cu, blue: Ti-Cu.
Sample | Contents of injections | Evaluation index | 0 h | 24 h | 48 h | 72 h | |
---|---|---|---|---|---|---|---|
Ti6Al4V-Cu | Polar extract | test | ER | 0 | 9 | 6 | 4 |
ED | 0 | 0 | 0 | 0 | |||
control | ER | 0 | 0 | 0 | 0 | ||
ED | 0 | 0 | 0 | 0 | |||
Non-polar extract | test | ER | 0 | 30 | 30 | 15 | |
ED | 0 | 30 | 15 | 15 | |||
control | ER | 0 | 30 | 30 | 15 | ||
ED | 0 | 30 | 15 | 15 | |||
Ti-Cu | Polar extract | test | ER | 0 | 12 | 9 | 6 |
ED | 0 | 0 | 0 | 0 | |||
control | ER | 0 | 0 | 0 | 0 | ||
ED | 0 | 0 | 0 | 0 | |||
Non-polar extract | test | ER | 0 | 30 | 30 | 15 | |
ED | 0 | 30 | 15 | 15 | |||
control | ER | 0 | 30 | 30 | 15 | ||
ED | 0 | 30 | 15 | 15 |
Table 4 The erythema and edema scores for the intradermal reaction.
Sample | Contents of injections | Evaluation index | 0 h | 24 h | 48 h | 72 h | |
---|---|---|---|---|---|---|---|
Ti6Al4V-Cu | Polar extract | test | ER | 0 | 9 | 6 | 4 |
ED | 0 | 0 | 0 | 0 | |||
control | ER | 0 | 0 | 0 | 0 | ||
ED | 0 | 0 | 0 | 0 | |||
Non-polar extract | test | ER | 0 | 30 | 30 | 15 | |
ED | 0 | 30 | 15 | 15 | |||
control | ER | 0 | 30 | 30 | 15 | ||
ED | 0 | 30 | 15 | 15 | |||
Ti-Cu | Polar extract | test | ER | 0 | 12 | 9 | 6 |
ED | 0 | 0 | 0 | 0 | |||
control | ER | 0 | 0 | 0 | 0 | ||
ED | 0 | 0 | 0 | 0 | |||
Non-polar extract | test | ER | 0 | 30 | 30 | 15 | |
ED | 0 | 30 | 15 | 15 | |||
control | ER | 0 | 30 | 30 | 15 | ||
ED | 0 | 30 | 15 | 15 |
Sample | Group | 24 h | 48 h |
---|---|---|---|
Ti6Al4V-Cu | Test group (polar extraction liquid) | 0% | 0% |
Test group (non-polar extraction liquid) | 0% | 0% | |
Negative control group | 0% | 0% | |
Positive control group | 100% | 100% | |
Ti-Cu | Test group (polar extraction liquid) | 0% | 0% |
Test group (non-polar extraction liquid) | 0% | 0% | |
Negative control group | 0% | 0% | |
Positive control group | 100% | 100% |
Table 5 Skin sensitization percentage in the test and control groups 24 h and 48 h after challenge.
Sample | Group | 24 h | 48 h |
---|---|---|---|
Ti6Al4V-Cu | Test group (polar extraction liquid) | 0% | 0% |
Test group (non-polar extraction liquid) | 0% | 0% | |
Negative control group | 0% | 0% | |
Positive control group | 100% | 100% | |
Ti-Cu | Test group (polar extraction liquid) | 0% | 0% |
Test group (non-polar extraction liquid) | 0% | 0% | |
Negative control group | 0% | 0% | |
Positive control group | 100% | 100% |
Fig. 8. Cu ions release kinetics. (A) First-order kinetics; (B) Higuchi equation; (C) Ritger and Peppas model; (D) Two-step model; (E) Zero-order model.
Cu ions release | ||||
---|---|---|---|---|
First order of kinetic | a:1.80801 | b: -1.74389 | m: 130.82076 | R2: 0.98777 |
Higuchi equation | a: -0.02362 | b: 0.07591 | - | R2: 0.96737 |
Ritger and Peppas model | a: 0.05632 | b: 0.01817 | n: 0.88159 | R2: 0.98903 |
Two steps model | a: 2.48798 | b1: -2.41104 b2: -0.02483 | m1:195.77432 m2:2.81833 | R2: 0.96874 |
Zero order model | a: 0.06891 | b: 0.01198 | - | R2: 0.98996 |
Table 6 Cu ions release parameters from Ti-Cu alloy.
Cu ions release | ||||
---|---|---|---|---|
First order of kinetic | a:1.80801 | b: -1.74389 | m: 130.82076 | R2: 0.98777 |
Higuchi equation | a: -0.02362 | b: 0.07591 | - | R2: 0.96737 |
Ritger and Peppas model | a: 0.05632 | b: 0.01817 | n: 0.88159 | R2: 0.98903 |
Two steps model | a: 2.48798 | b1: -2.41104 b2: -0.02483 | m1:195.77432 m2:2.81833 | R2: 0.96874 |
Zero order model | a: 0.06891 | b: 0.01198 | - | R2: 0.98996 |
[1] | C. Fang, T.M. Wong, T.W. Lau, K.K. To, S.S. Wong, F. Leung, J. Orthop. Surg. 25 (2017) 1-13. |
[2] |
W. Zimmerli, J. Intern. Med. 276 (2014) 111-119.
DOI PMID |
[3] |
J.A. Inzana, E.M. Schwarz, S.L. Kates, H.A. Awad, Biomaterials 81 (2016) 58-71.
DOI PMID |
[4] |
R.R. Laffer, P. Graber, P.E. Ochsner, W. Zimmerli, Clin. Microbiol. Infect. 12 (2006) 433-439.
DOI URL |
[5] | Y. Zhuang, L. Ren, S. Zhang, X. Wei, K. Yang, K. Dai, Acta Biomater. (119) (2020) 472-484. |
[6] |
Y. Zhuang, S. Zhang, K. Yang, L. Ren, K. Dai, J. Biomed. Mater. Res. 108 (2020) 484-495.
DOI URL |
[7] |
G.V. Vimbela, S.M. Ngo, C. Fraze, L. Yang, D.A. Stout, Int. J. Nanomed. 12 (2017) 3941-3965.
DOI PMID |
[8] |
R. Liu, K. Memarzadeh, B. Chang, Y. Zhang, Z. Ma, R.P. Allaker, L. Ren, K. Yang, Sci. Rep. 6 (2016) 29985.
DOI URL |
[9] |
R.A. Wapnir, Am. J. Clin. Nutr. 67 (1998) 1054S-1060S.
DOI URL |
[10] |
L. Ren, K. Yang, J. Mater. Sci. Technol. 29 (2013) 1005-1010.
DOI URL |
[11] |
L. Ren, Z. Ma, M. Li, Y. Zhang, W. Liu, Z. Liao, K. Yang, J. Mater. Sci. Technol. 30 (2014) 699-705.
DOI URL |
[12] |
R. Liu, Y. Tang, H. Liu, L. Zeng, Z. Ma, J. Li, Y. Zhao, L. Ren, K. Yang, J. Mater. Sci. Technol. 47 (2020) 202-215.
DOI URL |
[13] |
C. Peng, S. Zhang, Z. Sun, L. Ren, K. Yang, Mater. Sci. Eng. C 93 (2018) 495-504.
DOI URL |
[14] |
R. Liu, Y. Tang, L. Zeng, Y. Zhao, Z. Ma, Z. Sun, L. Xiang, L. Ren, K. Yang, Dent. Mater. 34 (2018) 1112-1126.
DOI URL |
[15] |
S.K. Kolawole, H. Wang, S. Zhang, Z. Sun, M.A. Siddiqui, I. Ullah, W. Song, F. Witte, K. Yang, J. Mater. Sci. Technol. 50 (2020) 31-43.
DOI URL |
[16] |
M. Li, Z. Ma, Y. Zhu, H. Xia, C. Mao, Adv. Healthcare Mater. 5 (2015) 557-566.
DOI URL |
[17] | J. Wang, S. Zhang, Z. Sun, H. Wang, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (2019) 2326-2334. |
[18] |
C. Peng, Y. Li, H. Liu, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (2019) 2121-2131.
DOI |
[19] |
D. Zhang, L. Ren, Y. Zhang, N. Xue, K. Yang, M. Zhong, Colloids Surf., B 105 (2013) 51-57.
DOI URL |
[20] |
O. Bondarenko, A. Ivask, A. Käkinen, A. Kahru, Environ. Pollut. 169 (2012) 81-89.
DOI PMID |
[21] |
C.J. Sarell, S.R. Wilkinson, J.H. Viles, J. Biol. Chem. 285 (2010) 41533-41540.
DOI URL |
[22] |
S. Jin, L. Ren, K. Yang, J. Mater. Sci. Technol. 32 (2016) 835-839.
DOI URL |
[23] |
N. Gargiulo, A.M. Cusano, F. Causa, D. Caputo, P.A. Netti, J. Mater. Sci.: Mater. Med. 24 (2013) 2129-2135.
DOI URL |
[24] | H. Lin, J. Zhang, F. Qu, J. Jiang, P. Jiang, J. Nanomater. 2013 (2013) 1-8. |
[25] |
Y. Zhu, X. Li, J. Yang, S. Wang, H. Gao, N. Hanagata, J. Mater. Chem. 21 (2011) 9208-9218.
DOI URL |
[26] | J. Zhang, Y. Li, K. Yang, X. Hao, Chin. J. Inorg. Chem. 26 (2010) 2251-2258. |
[27] |
C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Biomaterials 34 (2013) 422-433.
DOI URL |
[28] |
F. Shi, Y. Liu, W. Zhi, D. Xiao, H. Li, K. Duan, S. Qu, J. Weng, Biomed. Mater. 12 (2017) 035006.
DOI URL |
[29] |
H. Liu, R. Liu, I. Ullah, S. Zhang, Z. Sun, L. Ren, K. Yang, J. Mater. Sci. Technol. 48 (2020) 130-139.
DOI URL |
[30] |
W.R. Osório, A. Cremasco, P.N. Andrade, A. Garcia, R. Caram, Electrochim. Acta 55 (2010) 759-770.
DOI URL |
[31] |
A. Hahn, G. Brandes, P. Wagener, S. Barcikowski, J. Controlled Release 154 (2011) 164-170.
DOI URL |
[32] | A. Ewald, C. Käppel, E. Vorndran, C. Moseke, M. Gelinsky, U. Gbureck, J. Biomed. Mater. Res., Part A 100A (2012) 2392-2400. |
[33] |
C. Gérard, L. Bordeleau, J. Barralet, C.J. Doillon, Biomaterials 31 (2010) 824-831.
DOI URL |
[34] | R. Liu, Z. Ma, S. Kolawole, L.L. Zeng, Y. Zhao, L. Ren, Ke Yang, J.Mater. Sci.: Mater. Med. 30 (2019) 75. |
[1] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[2] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
[3] | Nagaraj Murugan, Rajendran Jerome, Murugan Preethika, Anandhakumar Sundaramurthy, Ashok K. Sundramoorthy. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid [J]. J. Mater. Sci. Technol., 2021, 72(0): 122-131. |
[4] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[5] | Yifei Wang, Jing Zhang, Kangmei Li, Jun Hu. Surface characterization and biocompatibility of isotropic microstructure prepared by UV laser [J]. J. Mater. Sci. Technol., 2021, 94(0): 136-146. |
[6] | Ruifeng Dong, Hongchao Kou, Yuhong Zhao, Xiaoyang Zhang, Ling Yang, Hua Hou. Morphology characteristics of α precipitates related to the crystal defects and the strain accommodation of variant selection in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 95(0): 1-9. |
[7] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[8] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[9] | Run Huang, Lei Liu, Bo Li, Liang Qin, Lei Huang, Kelvin W.K. Yeung, Yong Han. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate fabricating biological surface through dual-ion implantation to concurrently modulate the osteogenic functions of mesenchymal stem cells and kill bacteria [J]. J. Mater. Sci. Technol., 2021, 73(0): 31-44. |
[10] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[11] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[12] | Jingbin Zhang, Yinrui Sun, Zhijie Ji, Haiwen Luo, Feng Liu. Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability [J]. J. Mater. Sci. Technol., 2021, 75(0): 139-153. |
[13] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[14] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[15] | Jiachen Zhang, Taiwen Huang, Kaili Cao, Jia Chen, Huajing Zong, Dong Wang, Jian Zhang, Jun Zhang, Lin Liu. A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 68-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||