J. Mater. Sci. Technol. ›› 2021, Vol. 95: 225-236.DOI: 10.1016/j.jmst.2021.03.077
• Research Article • Previous Articles Next Articles
Yu Zhanga, Shuai Changb, Yuyong Chenc,d, Yuchao Baia, Cuiling Zhaoa, Xiaopeng Wangb, Jun Min Xueb, Hao Wanga,*()
Received:
2021-01-05
Revised:
2021-03-19
Accepted:
2021-03-31
Published:
2021-12-30
Online:
2021-06-01
Contact:
Hao Wang
About author:
* E-mail address: mpewhao@nus.edu.sg (H. Wang).Yu Zhang, Shuai Chang, Yuyong Chen, Yuchao Bai, Cuiling Zhao, Xiaopeng Wang, Jun Min Xue, Hao Wang. Low-temperature superplasticity of β-stabilized Ti-43Al-9V-Y alloy sheet with bimodal γ-grain-size distribution[J]. J. Mater. Sci. Technol., 2021, 95: 225-236.
Fig. 1. Microstructure of the Ti-43Al-9V-0.2Y alloy sheet hot-rolled at 1100 °C: (a), (b) BSE micrographs; (c) high magnified view of β-phase region; (d) EBSD phase-contrast map; (e) average linear intercept equiaxed γ grain size distribution.
Fig. 2. (a), (c) Bright-field TEM images of the γ lath grains in β phase region and SADP of the region enclosed in circle b in (a) [36]; (b) high-magnification image of rectangular region in (a); (d) bright-field TEM image of large-size γ lath grain.
Fig. 3. (a) Superplastic tensile stress-strain curves of Ti-43Al-9V-0.2Y alloy sheet at different temperatures; (b) the corresponding appearance of the samples after tests; (c) the tensile curves at different strain rates at 800 °C; (d) the relationship between ln σ and ln at different strains and strain rate tests ranging from 0.0001 s-1 to 0.0005 s-1.
Fig. 4. (a), (b) Micrograph of the nano-indentation for β and γ phases, respectively; (c), (d) resulting hardness and Young's modulus of these two phases; (e) load-displacement curves in nanoindentation test.
Fig. 7. (a) Schematic of the coordinated relationship between the tensile specimen and TiAl alloy sheet; (b) EBSD specimen's position in tensile samples; IQ images of the samples after superplastic deformation at different temperatures: (c) 800 °C; (d) 850 °C; (e) 900 °C.
Fig. 8. (a) Phase-contrast maps with grain boundaries of Ti-43Al-9V-0.2Y sheet samples tested at different temperatures: (a) 800 °C; (b) 850 °C; (c) 900 °C.
Fig. 11. Fracture surfaces of the tensile-test samples at different temperatures with the strain rate of 0.0002 s - 1: (a) 750 °C; (b) 800 °C; (c) 850 °C; (d) 900 °C; (e) EDS analysis of the oxide particles on the fracture surface of the tensile-test sample at 900 °C.
[1] |
T. Tetsui, Adv. Eng. Mater. 3 (2001) 307-310.
DOI URL |
[2] |
X. Wu, Intermetallics 14 (2006) 1114-1122.
DOI URL |
[3] |
H. Clemens, S. Mayer, Mater. High Temp. 33 (2016) 560-570.
DOI URL |
[4] |
F. Appel, H. Clemens, F.D. Fischer, Prog. Mater. Sci. 81 (2016) 55-124.
DOI URL |
[5] | H. Kestler, H. Clemens, in: Titanium and Titanium Alloys, Wiley-VCH Verlag GmbH & Co. KGaA, 2003, pp. 351-392. |
[6] | G. Das, H. Kestler, H. Clemens, P.A. Bartolotta, JOM 56 (2004) 42-45. |
[7] | Y.T. Zhu, T.G. Langdon, JOM 56 (2004) 58-63. |
[8] |
R.Z. Valiev, C. Song, S.X. McFadden, A.K. Mukherjee, R.S. Mishra, Philos. Mag. A 81 (2001) 25-36.
DOI URL |
[9] |
Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T.G. Langdon, Acta Mater 48 (2000) 3633-3640.
DOI URL |
[10] |
H.Z. Niu, F.T. Kong, S.L. Xiao, Y.Y. Chen, F. Yang, Intermetallics 21 (2012) 97-104.
DOI URL |
[11] |
P. Erdely, P. Staron, E. Maawad, N. Schell, J. Klose, S. Mayer, H. Clemens, Acta Mater 126 (2017) 145-153.
DOI URL |
[12] |
C. Zhang, K. Zhang, J. Alloys Compd. 492 (2010) 236-240.
DOI URL |
[13] |
D. Lin, F. Sun, Intermetallics 12 (2004) 875-883.
DOI URL |
[14] |
J. Sun, Y.H. He, J.S. Wu, Mater. Sci. Eng. A 329-331 (2002) 885-890.
DOI URL |
[15] |
R.M. Imayev, G.A. Salishchev, O.N. Senkov, V.M. Imayev, M.R. Shagiev, N.K. Gab-dullin, A.V. Kuznetsov, F.H. Froes, Mater. Sci. Eng. A 300 (2001) 263-277.
DOI URL |
[16] |
T.G. Nieh, L.M. Hsiung, J. Wadsworth, Intermetallics 7 (1999) 163-170.
DOI URL |
[17] |
V. Imayev, R. Gaisin, A. Rudskoy, T. Nazarova, R. Shaimardanov, R. Imayev, J. Alloys Compd. 663 (2016) 217-224.
DOI URL |
[18] |
S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee, Nature 398 (1999) 684-686.
DOI URL |
[19] |
T.G. Langdon, J. Mater. Sci. 41 (2006) 597-609.
DOI URL |
[20] |
L. Cheng, Y. Chen, J.S. Li, E. Bouzy, Mater. Lett. 194 (2017) 58-61.
DOI URL |
[21] |
J.N. Wang, Y. Wang, Int. J. Plast. 22 (2006) 1530-1548.
DOI URL |
[22] |
T. Schmoelzer, K.D. Liss, C. Kirchlechner, S. Mayer, A. Stark, M. Peel, H. Clemens, Intermetallics 39 (2013) 25-33.
DOI URL |
[23] |
T. Schmoelzer, K.D. Liss, G.A. Zickler, I.J. Watson, L.M. Droessler, W. Wallgram, T. Buslaps, A. Studer, H. Clemens, Intermetallics 18 (2010) 1544-1552.
DOI URL |
[24] |
I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, K. Ishida, Acta Mater 48 (2000)3113-3123.
DOI URL |
[25] |
L. Cheng, J.S. Li, X.Y. Xue, B. Tang, H.C. Kou, E. Bouzy, Intermetallics 75 (2016) 62-71.
DOI URL |
[26] | F. Appel, M. Oehring, in: Titanium and Titanium Alloys, Fundamentals and Ap-plications, 2003, pp. 89-152. |
[27] |
S. Cheng, J. Wolfenstine, O. Sherby, Metall. Trans. A 23 (1992) 1509-1513.
DOI URL |
[28] |
H. Clemens, I. Rumberg, P. Schretter, S. Schwantes, Intermetallics 2 (1994) 179-184.
DOI URL |
[29] |
K. Ameyama, H. Uno, M. Tokizane, Intermetallics 2 (1994) 315-319.
DOI URL |
[30] |
J.H. Kim, D.H. Shin, S.L. Semiatin, C.S. Lee, Mater. Sci. Eng. A 344 (2003) 146-157.
DOI URL |
[31] | W.A. Backofen, Trans. ASM 57 (1964) 980-990. |
[32] |
J. Lin, J. Yang, Int. J. Plast. 15 (1999) 1181-1196.
DOI URL |
[33] |
T. Kim, F. Dunne, Proc. Inst. Mech. Eng., Part G 211 (1997) 367-380.
DOI URL |
[34] |
F.R. Kaschel, R.K. Vijayaraghavan, A. Shmeliov, E.K. McCarthy, M. Canavan, P.J. McNally, D.P. Dowling, V. Nicolosi, M. Celikin, Acta Mater 188 (2020) 720-732.
DOI URL |
[35] |
T. Ungar, Scr. Mater. 51 (2004) 777-781.
DOI URL |
[36] |
Y. Zhang, X. Wang, F. Kong, L. Sun, J. Alloys Compd. 777 (2019) 795-805.
DOI URL |
[37] | F. Cruz-Gandarilla, R. Bolmaro, H. Mendoza-León, A.M. Salcedo-Garrido, J. Mi-crosc. 275 (2019) 133-148. |
[38] | (2020) https://mtex-toolbox.github.io/EBSDKAM.html. |
[39] | R.A. Schwarzer, D.P. Field, B.L. Adams, M. Kumar, A.J. Schwartz, in: Electron Backscatter Diffraction in Materials Science, Springer, 2009, pp. 1-20. |
[40] |
Y.F. Guo, Y.S. Wang, D.L. Zhao, Acta Mater 55 (2007) 401-407.
DOI URL |
[41] |
H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, Z.P. Lu, Adv. Mater. 29 (2017) 1701678.
DOI URL |
[42] | S. Hanada, S. Watanabe, O. Izumi, Mater. Trans. 30 (1989) 77-85 JIM. |
[43] |
G. Rai, N.J. Grant, Metall. Trans. A 14 (1983) 1451-1458.
DOI URL |
[44] | O.A. Ruano, O. Sherby, Rev. Phys. Appl. 23 (1988) 625-637. |
[1] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[2] | J.W. Liang, Y.F. Shen, R.D.K. Misra, P.K. Liaw. High strength-superplasticity combination of ultrafine-grained ferritic steel: The significant role of nanoscale carbides [J]. J. Mater. Sci. Technol., 2021, 83(0): 131-144. |
[3] | Longjun Wu, Zhengwang Zhu, Dingming Liu, Huameng Fu, Hong Li, Aimin Wang, Hongwei Zhang, Zhengkun Li, Long Zhang, Haifeng Zhang. Deformation behavior of a TiZr-based metallic glass composite containing dendrites in the supercooled liquid region [J]. J. Mater. Sci. Technol., 2020, 37(0): 64-70. |
[4] | Xu H., Li X.B., Xing W.W., Shu L., Ma Y.C., Liu K.. Solidification pathway and phase transformation behavior in a beta-solidified gamma-TiAl based alloy [J]. J. Mater. Sci. Technol., 2019, 35(11): 2652-2657. |
[5] | Wei-Wei Zhang, Guang-Rong Li, Qiang Zhang, Guan-Jun Yang, Guo-Wang Zhang, Hong-Min Mu. Bimodal TBCs with low thermal conductivity deposited by a powder-suspension co-spray process [J]. J. Mater. Sci. Technol., 2018, 34(8): 1293-1304. |
[6] | S.Z. Zhang, Z.W. Song, J.C. Han, C.J. Zhang, P. Lin, D.D. Zhu, F.T. Kong, Y.Y. Chen. Effect of 2-6 at.% Mo addition on microstructural evolution of Ti-44Al alloy [J]. J. Mater. Sci. Technol., 2018, 34(7): 1196-1204. |
[7] | Min Zha, Hong-Min Zhang, Zhi-Yuan Yu, Xuan-He Zhang, Xiang-Tao Meng, Hui-Yuan Wang, Qi-Chuan Jiang. Bimodal microstructure - A feasible strategy for high-strength and ductile metallic materials [J]. J. Mater. Sci. Technol., 2018, 34(2): 257-264. |
[8] | H.S. Ren, H.P. Xiong, B. Chen, S.J. Pang, B.Q. Chen, L. Ye. Microstructures and Mechanical Properties of Vacuum Brazed Ti3Al/TiAl Joints Using Two Ti-based Filler Metals [J]. J. Mater. Sci. Technol., 2016, 32(4): 372-380. |
[9] | R.Mu, oz-Moreno, E.M.Ruiz-Navas, B.Srinivasarao, J.M.Torralba. Microstructural Development and Mechanical Properties of PM Ti-45Al-2Nb-2Mn-0.8 vol.%TiB2 Processed by Field Assisted Hot Pressing [J]. J. Mater. Sci. Technol., 2014, 30(11): 1145-1154. |
[10] | Z.A. Luo, G.M. Xie, Z.Y. Ma, G.L. Wang, G.D. Wang. Effect of Yttrium Addition on Microstructural Characteristics and Superplastic Behavior of Friction Stir Processed ZK60 Alloy [J]. J. Mater. Sci. Technol., 2013, 29(12): 1116-1122. |
[11] | S. Spigarelli, M. El Mehtedi, M. Regev, E. Gariboldi, N. Lecis. High Temperature Creep and Superplasticity in a Mg-Zn-Zr Alloy [J]. J Mater Sci Technol, 2012, 28(5): 407-413. |
[12] | F.C. Liu, Z.Y. Ma, F.C. Zhang. High Strain Rate Superplasticity in a Micro-grained Al–Mg–Sc Alloy with Predominant High Angle Grain Boundaries [J]. J. Mater. Sci. Technol., 2012, 28(11): 1025-1030. |
[13] | Ping Han, Yihui Qi, Jianting Guo. Microstructure and Elevated Temperature Tensile Behavior of Directionally Solidified Ni-rich NiAl-Mo(Hf) Alloy [J]. J Mater Sci Technol, 2011, 27(5): 437-442. |
[14] | M.J. Xiao, Y.X. Tian, G.W. Mao, S.J. Li, Y.L. Hao, R. Yang. Superplasticity of Ti2448 Alloy with Nanostructured Grains [J]. J Mater Sci Technol, 2011, 27(12): 1099-1104. |
[15] | Guofeng Wang Kaifeng Zhang. Superplastic Properties of Al2O3/Ni-Mn Nanocomposite Fabricated by Electrodeposition [J]. J Mater Sci Technol, 2010, 26(7): 625-628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||