J. Mater. Sci. Technol. ›› 2021, Vol. 81: 229-235.DOI: 10.1016/j.jmst.2021.01.010
• Research Article • Previous Articles Next Articles
Chuan Moa, Wenlin Moa, Peng Zhoub, BaiXue Bianc, Yong Duc, Tao Faa,*(), Pengguo Zhanga, Ruiwen Lia, Yanzhi Zhanga, Changsheng Zhangd, Yuanhua Xiad, Xiaolin Wange,*(
)
Received:
2020-07-08
Revised:
2020-10-13
Accepted:
2020-10-31
Published:
2021-01-16
Online:
2021-01-16
Contact:
Tao Fa,Xiaolin Wang
About author:
*E-mail addresses: taofa0917@gmail.com (T. Fa),Chuan Mo, Wenlin Mo, Peng Zhou, BaiXue Bian, Yong Du, Tao Fa, Pengguo Zhang, Ruiwen Li, Yanzhi Zhang, Changsheng Zhang, Yuanhua Xia, Xiaolin Wang. Experimental investigation and thermodynamic modeling of the U-Nb system[J]. J. Mater. Sci. Technol., 2021, 81: 229-235.
Fig. 1. Phase diagrams of U-Nb system from previous researcher: (a) Rough et al. [19], (b) Terekhov et al. [22], (c) Koike et al. [12], (d) Romig et al. [13].
Nominal composition (Nb at.%) | 0.5 | 2 | 5 | 5.7 | 7 | 10 | 12 | 14 | 16 | 18 | 20 | 30 | 40 | 80 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Composition measured by ICP | 0.56 | 2.044 | 5.035 | 5.65 | 6.93 | 10.08 | 12.50 | 14.06 | 15.73 | 17.81 | 19.66 | 31.91 | 39.03 | 78.08 |
605 °C | αU | αU + γ2 | γ2 | |||||||||||
635 °C | αU | αU + γ1 | γ1 | γ1 + γ 2 | γ2 | |||||||||
655 °C | αU | αU + γ1 | γ1 | γ1 + γ 2 | γ2 | |||||||||
675 °C | βU | βU + γ1 | γ1 | γ1 + γ 2 | γ2 |
Table 1 Summary of the phases for the U-Nb alloys annealed at 605 °C, 635 °C, 655 °C, and 675 °C for 30 days.
Nominal composition (Nb at.%) | 0.5 | 2 | 5 | 5.7 | 7 | 10 | 12 | 14 | 16 | 18 | 20 | 30 | 40 | 80 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Composition measured by ICP | 0.56 | 2.044 | 5.035 | 5.65 | 6.93 | 10.08 | 12.50 | 14.06 | 15.73 | 17.81 | 19.66 | 31.91 | 39.03 | 78.08 |
605 °C | αU | αU + γ2 | γ2 | |||||||||||
635 °C | αU | αU + γ1 | γ1 | γ1 + γ 2 | γ2 | |||||||||
655 °C | αU | αU + γ1 | γ1 | γ1 + γ 2 | γ2 | |||||||||
675 °C | βU | βU + γ1 | γ1 | γ1 + γ 2 | γ2 |
Composition (Nb at.%) | 2 | 5 | 7 | 10 | Average | |
---|---|---|---|---|---|---|
Content (Nb at.%) | Annealed at 635 °C | 11.4 | — | 11.6 | 11.9 | 11.5 |
Annealed at 655 °C | — | 10.3 | 10.7 | — | 10.5 |
Table 2 Content of Nb in the γ phase of the annealed U-Nb alloys (U-2Nb, U-5Nb, U-7Nb, U-10Nb) determined by EDS.
Composition (Nb at.%) | 2 | 5 | 7 | 10 | Average | |
---|---|---|---|---|---|---|
Content (Nb at.%) | Annealed at 635 °C | 11.4 | — | 11.6 | 11.9 | 11.5 |
Annealed at 655 °C | — | 10.3 | 10.7 | — | 10.5 |
Heating rate | Pure U (This work) | Pure U Rai | 14 at.% Nb WQ | 14 at.% Nb WQ |
---|---|---|---|---|
α → β | α→ β | α → γ | α → β | |
5 K/min | 664.5 | 660.7 | —— | 669.7 |
10 K/min | 666 | 661.6 | 640 | 668.7 |
20 K/min | 666.7 | 662 | 641.3 | 668.9 |
30 K/min | —— | 662.7 | 643 | 668.1 |
0 K/min | 664.9 | 660.7 | 638.3 | 669.7 |
Revision | 660.7 | 660.7 | 634.1 | 665.5 |
Table 3 Summary of the phase transition temperatures for the annealed U-14Nb alloy and pure uranium at different rates (5, 10, 20, and 30 K/min) by STA409, compared with the experimental data by Rai et al. [26].
Heating rate | Pure U (This work) | Pure U Rai | 14 at.% Nb WQ | 14 at.% Nb WQ |
---|---|---|---|---|
α → β | α→ β | α → γ | α → β | |
5 K/min | 664.5 | 660.7 | —— | 669.7 |
10 K/min | 666 | 661.6 | 640 | 668.7 |
20 K/min | 666.7 | 662 | 641.3 | 668.9 |
30 K/min | —— | 662.7 | 643 | 668.1 |
0 K/min | 664.9 | 660.7 | 638.3 | 669.7 |
Revision | 660.7 | 660.7 | 634.1 | 665.5 |
Liquid: (Nb, U)1 |
---|
${}^{o}G_{\text{U}}^{\text{liquid}}-H_{\text{U}}^{\text{SER}}={}^{o}G_{\text{U}}^{\text{ }\!\!\alpha\!\!\text{ U}}+12355.5-10.3239T$ |
${}^{o}G_{\text{U}}^{\text{liquid}}-H_{\text{Nb}}^{\text{SER}}={}^{o}G_{\text{Nb}}^{\gamma }+29781.555-10.816418T-3.06098\times {{10}^{-23}}{{T}^{7}}T<2750$ |
$\text{=}{}^{o}G_{\text{Nb}}^{\gamma }+30169.925-10.964695T-1.528538\times {{10}^{32}}{{T}^{-9}}T>2750$ |
${}^{o}L_{\text{Nb},\text{U}}^{\text{liq}}=15135.9353-28.9999694{{T}^{1}}L_{\text{Nb},\text{U}}^{\text{liq}}=28372.2053-28.9993676T$ |
$bcc\gamma :\text{ }{{\left( Nb,\text{ }U \right)}_{1}}{{\left( Va \right)}_{3}}$ |
${}^{o}G_{\text{U}}^{\text{ }\!\!\gamma\!\!\text{ }}-H_{\text{U}}^{\text{SER}}=-752.767+131.538T-27.5152T\ln T-0.00835595{{T}^{2}}-9.67907\times {{10}^{-7}}{{T}^{3}}+204,611{{T}^{-1}}T<1049$ |
$=-4698.365+202.685634T-38.2836T\ln TT>1049$ |
${}^{o}G_{Nb}^{\text{ }\!\!\gamma\!\!\text{ }}-H_{Nb}^{\text{SER}}=-8519.353+142.045475T-26.4711T\ln T+2.03475\times {{10}^{-4}}{{T}^{2}}-3.5012\times {{10}^{-7}}{{T}^{3}}+93,399{{T}^{-1}}T<2750$ ${}^{o}L_{\text{Nb},\text{U}}^{\text{bcc}}=26613.2839-28.0313281T$ |
${}^{1}L_{\text{Nb},\text{U}}^{\text{bcc}}=-22540.6083$ |
${}^{2}L_{\text{Nb},\text{U}}^{\text{bcc}}=-25360.6090-2.02123221T$ ${}^{3}L_{\text{Nb},\text{U}}^{\text{bcc}}=-11386.2265$ |
$tet\beta U:\text{ }{{\left( Nb,\text{ }U \right)}_{1}}$ |
${}^{\text{o}}G_{\text{U}}^{\text{ }\!\!\beta\!\!\text{ U}}-H_{\text{U}}^{\text{SER}}\text{=}5156.136+106.976316T-22.841T\ln T-0.01084475{{T}^{2}}+2.7889\times {{10}^{-8}}{{T}^{3}}+81,944{{T}^{-1}}T<941.5$ |
$\text{=}-14327.309+244.16802T-42.9278T\ln TT>941.5$ |
${}^{\text{o}}G_{\text{Nb}}^{\text{ }\!\!\beta\!\!\text{ U}}-H_{\text{Nb}}^{\text{SER}}=={}^{\text{o}}G_{\text{Nb}}^{\text{ }\!\!\gamma\!\!\text{ }}+26107.5306$ |
$ort\alpha U:\text{ }{{\left( Nb,\text{ }U \right)}_{1}}$ |
${}^{\text{o}}G_{\text{Nb}}^{\text{ }\!\!\alpha\!\!\text{ U}}-H_{\text{Nb}}^{\text{SER}}=-8407.734+130.955151T-26.9182T\ln T+0.00125156{{T}^{2}}-4.42605\times {{10}^{-6}}{{T}^{3}}+38,568{{T}^{-1}}<955$ |
$=-22521.8+292.121093T-48.66\text{ }T\text{ }lnT\text{ }T955$ ${}^{\text{o}}G_{\text{Nb}}^{\text{ }\!\!\alpha\!\!\text{ U}}-H_{\text{Nb}}^{\text{SER}}=={}^{\text{o}}G_{\text{Nb}}^{\text{ }\!\!\gamma\!\!\text{ }}+27337.4226$ |
Table 4 Optimized thermodynamic parameters for the U-Nb system.
Liquid: (Nb, U)1 |
---|
${}^{o}G_{\text{U}}^{\text{liquid}}-H_{\text{U}}^{\text{SER}}={}^{o}G_{\text{U}}^{\text{ }\!\!\alpha\!\!\text{ U}}+12355.5-10.3239T$ |
${}^{o}G_{\text{U}}^{\text{liquid}}-H_{\text{Nb}}^{\text{SER}}={}^{o}G_{\text{Nb}}^{\gamma }+29781.555-10.816418T-3.06098\times {{10}^{-23}}{{T}^{7}}T<2750$ |
$\text{=}{}^{o}G_{\text{Nb}}^{\gamma }+30169.925-10.964695T-1.528538\times {{10}^{32}}{{T}^{-9}}T>2750$ |
${}^{o}L_{\text{Nb},\text{U}}^{\text{liq}}=15135.9353-28.9999694{{T}^{1}}L_{\text{Nb},\text{U}}^{\text{liq}}=28372.2053-28.9993676T$ |
$bcc\gamma :\text{ }{{\left( Nb,\text{ }U \right)}_{1}}{{\left( Va \right)}_{3}}$ |
${}^{o}G_{\text{U}}^{\text{ }\!\!\gamma\!\!\text{ }}-H_{\text{U}}^{\text{SER}}=-752.767+131.538T-27.5152T\ln T-0.00835595{{T}^{2}}-9.67907\times {{10}^{-7}}{{T}^{3}}+204,611{{T}^{-1}}T<1049$ |
$=-4698.365+202.685634T-38.2836T\ln TT>1049$ |
${}^{o}G_{Nb}^{\text{ }\!\!\gamma\!\!\text{ }}-H_{Nb}^{\text{SER}}=-8519.353+142.045475T-26.4711T\ln T+2.03475\times {{10}^{-4}}{{T}^{2}}-3.5012\times {{10}^{-7}}{{T}^{3}}+93,399{{T}^{-1}}T<2750$ ${}^{o}L_{\text{Nb},\text{U}}^{\text{bcc}}=26613.2839-28.0313281T$ |
${}^{1}L_{\text{Nb},\text{U}}^{\text{bcc}}=-22540.6083$ |
${}^{2}L_{\text{Nb},\text{U}}^{\text{bcc}}=-25360.6090-2.02123221T$ ${}^{3}L_{\text{Nb},\text{U}}^{\text{bcc}}=-11386.2265$ |
$tet\beta U:\text{ }{{\left( Nb,\text{ }U \right)}_{1}}$ |
${}^{\text{o}}G_{\text{U}}^{\text{ }\!\!\beta\!\!\text{ U}}-H_{\text{U}}^{\text{SER}}\text{=}5156.136+106.976316T-22.841T\ln T-0.01084475{{T}^{2}}+2.7889\times {{10}^{-8}}{{T}^{3}}+81,944{{T}^{-1}}T<941.5$ |
$\text{=}-14327.309+244.16802T-42.9278T\ln TT>941.5$ |
${}^{\text{o}}G_{\text{Nb}}^{\text{ }\!\!\beta\!\!\text{ U}}-H_{\text{Nb}}^{\text{SER}}=={}^{\text{o}}G_{\text{Nb}}^{\text{ }\!\!\gamma\!\!\text{ }}+26107.5306$ |
$ort\alpha U:\text{ }{{\left( Nb,\text{ }U \right)}_{1}}$ |
${}^{\text{o}}G_{\text{Nb}}^{\text{ }\!\!\alpha\!\!\text{ U}}-H_{\text{Nb}}^{\text{SER}}=-8407.734+130.955151T-26.9182T\ln T+0.00125156{{T}^{2}}-4.42605\times {{10}^{-6}}{{T}^{3}}+38,568{{T}^{-1}}<955$ |
$=-22521.8+292.121093T-48.66\text{ }T\text{ }lnT\text{ }T955$ ${}^{\text{o}}G_{\text{Nb}}^{\text{ }\!\!\alpha\!\!\text{ U}}-H_{\text{Nb}}^{\text{SER}}=={}^{\text{o}}G_{\text{Nb}}^{\text{ }\!\!\gamma\!\!\text{ }}+27337.4226$ |
Fig. 5. Calculated U-Nb phase diagram, compared with the experimental data. The solid lines are according to the present calculation, while the dotted lines are calculated using the parameters from Duong et al. [6].
Fig. 6. Calculated phase diagram of U-Nb binary system in the U-rich region with the present experimental data. The dotted lines are calculated using the parameters from Duong et al. [6].
Reaction type | Reaction | Nb (at.%) | T (°C) | References | ||
---|---|---|---|---|---|---|
Eutectoid | βU → α U + γ U | 1.3 | 1.1 | 10.35 | 664 | [ |
0.56 | 0.46 | 7.5 | 666 | Calculation | ||
Measured | ||||||
Monotectoid | γU → α U +γNb | 13.3 | 1.3 | 71.7 | 647 | [ |
12.2 | 0.7 | 70.1 | 633.8 | Calculation | ||
11.5 ± 0.5 | 634.1 | Measured | ||||
Critical | (γU,Nb) → γU + γ Nb | 52.3 | 930-970 | [ | ||
47.3 | 981 | Calculation | ||||
Measured |
Table 5 Comparison between the calculated and measured invariant equilibria in U-Nb system.
Reaction type | Reaction | Nb (at.%) | T (°C) | References | ||
---|---|---|---|---|---|---|
Eutectoid | βU → α U + γ U | 1.3 | 1.1 | 10.35 | 664 | [ |
0.56 | 0.46 | 7.5 | 666 | Calculation | ||
Measured | ||||||
Monotectoid | γU → α U +γNb | 13.3 | 1.3 | 71.7 | 647 | [ |
12.2 | 0.7 | 70.1 | 633.8 | Calculation | ||
11.5 ± 0.5 | 634.1 | Measured | ||||
Critical | (γU,Nb) → γU + γ Nb | 52.3 | 930-970 | [ | ||
47.3 | 981 | Calculation | ||||
Measured |
Fig. 7. Heat of formation of γ-bcc U-Nb alloys as a function of composition obtained from the U-Nb CALPHAD model (at T =0 K), and compared with the current First-principles energetic calculations. Reference states are γ-bcc U and γ-bcc Nb. The solid lines are according to the present calculation, while the dotted lines are calculated using the parameters from Duong et al. [ 6].
Fig. 8. Calculated Gibbs formation energy of U-Nb at 775 °C with γ-bcc U and γ-bcc Nb as a reference state, compared with the experimental values of Vambersky et al. [ 24]. The solid lines are according to the present calculation, the dotted line is calculated using the parameters from Duong et al. [6].
Fig. 9. Calculated Gibbs formation energy of U-Nb at 900 °C with γ-bcc U and γ-bcc Nb as a reference state, compared with the experimental values of Vambersky et al. [ 24]. The solid lines are according to the present calculation, the dotted line is calculated using the parameters from Duong et al. [6].
[1] |
C. Guéneau, S. Chatain, S. Gossé, C. Rado, O. Rapaud, J. Lechelle, J.C. Dumas, C. Chatillon, J. Nucl. Mater. 344 (2005) 191-197.
DOI URL |
[2] | R. Schmid-Fetzer, D. Andersson, P.Y. Chevalier, L. Eleno, O. Fabrichnaya, U.R. Kattner, B. Sundman, C. Wang, A. Watson, L. Zabdyr, M. Zinkevich, CouplingPhase Diagr. Thermochem. 31 (2007) 38-52. |
[3] | C. Degueldre, Ch. Guéneau, J.Nucl. Mater. 352 (2006) 4-8. |
[4] | A.E. Dwight, M.H. Mueller, Argonne Lab Report ANL-5581, 1957. |
[5] |
X.J. Liu, Z.S. Li, J. Wang, C.P. Wang, J. Nucl. Mater. 380 (2008) 99-104.
DOI URL |
[6] |
T.C. Duong, R.E. Hackenberg, A. Landa, P. Honarmandi, A. Talapatra, H.M. Volz, A. Llobet, A.I. Smith, G. King, S. Bajaj, A. Ruban, L. Vitos, P.E.A. Turchi, R. Arroyave, Calphad 55 (2016) 219-230.
DOI URL |
[7] |
Y. Du, S. Liu, L.J. Zhang, H.H. Xu, D.D. Zhao, A.J. Wang, L.C. Zhou, Calphad 35 (2011) 427-445.
DOI URL |
[8] | N. Li, D.J. Li, W.B. Zhang, K.K. Chang, F. Dang, Y. Du, H.J. Seifert, Prog. Nat. Sci.:Mater.Int. 29 (2019) 265-276. |
[9] |
Y.B. Peng, Y. Du, P. Zhou, W.B. Zhang, W.M. Chen, L. Chen, S.Q. Wang, G.G. Wen, W. Xie, Int. J. Refract. Met. Hard Mater. 42 (2014) 57-70.
DOI URL |
[10] |
K.K. Chang, F.P. Meng, F.F. Ge, G.S. Zhao, S.Y. Du, F. Huang, J. Nucl. Mater. 516 (2019) 63-72.
DOI |
[11] |
C. D’Amato, F.S. Saraceno, T.B. Wilson, J. Nucl. Mater. 12 (1964) 291-304.
DOI URL |
[12] |
J. Koike, M.E. Kassner, R.E. Tate, R.S. Rosen, J. Phase Equilib. 19 (1998) 253-260.
DOI URL |
[13] | A.D. Romig, Sandia Lab Report SAND-86-0906C, 1986. |
[14] |
R.J. Jackson, Metallography 6 (1973) 347-359.
DOI URL |
[15] | B.A. Rogers, D.F. Atkins, E.J. Manthos, M.E. Kirkpatrick, Trans. Metall. Soc. AIME 212 (1958) 387-393. |
[16] |
A.K. Mallik, Bull. Mater. Sci. 8 (1986) 107-121.
DOI URL |
[17] | H.A. Saller, F.A. Rough, No. BMI-1000, Battelle Memorial Institute, Columbus, OH, USA, 1955. |
[18] | B. Sawyer, Argonne Lab Report ANL-4027, October, 1946. |
[19] | F.A. Rough, A.A. Bauer, No. BMI-1300, Battelle Memorial Institute, Columbus, OH, USA, 1958. |
[20] | P.C.L. Pfeil, J.D. Browne, G.K. Williamson, J. Inst. Met. 87 (1958) 204-208. |
[21] | O.S. Ivanov, G.I. Terekhov, Struct. Alloy Certain Syst. Contain. Uranium Thorium 10 (1961) 249-264. |
[22] | G.I. Terekhov, Russ. Met. 4 (1982) 170-171. |
[23] | T.B. Massalski, P.R. Subramanian, H. Okamoto, L. Kacprzak, ASM International, Russell Township, Geauga County, Ohio, 1990. |
[24] |
Y.V. Vambersky, A.L. Udovsky, O.S. Ivanov, J. Nucl. Mater. 55 (1975) 96-108.
DOI URL |
[25] | G.B. Fedorov, E.A. Smirnov, Sov. J. Atom. Energy. 21 (1966) 837-840. |
[26] |
A.K. Rai, S. Raju, B. Jeyaganesh, E. Mohandas, R. Sudha, V. Ganesan, J. Nucl. Mater. 383 (2009) 215-225.
DOI URL |
[27] |
A.T. Dinsdale, Calphad 15 (1991) 317-425.
DOI URL |
[28] |
O. Redlich, A.T. Kister, Ind. Eng. Chem. 40 (1948) 341-345.
DOI URL |
[29] |
B. Sundman, B. Jansson, J.O. Andersson, Calphad 9 (1985) 153-190.
DOI URL |
[1] | Qiang Ren, Yuexin Zhang, Ying Ren, Lifeng Zhang, Jujin Wang, Yadong Wang. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab [J]. J. Mater. Sci. Technol., 2021, 61(0): 147-158. |
[2] | Fang Wang, Liu He, Xiangguo Zeng, Zhongpeng Qi, Bo Song, Xin Yang. Triaxial tension-induced damage behavior of nanocrystalline NiTi alloy and its dependence on grain size [J]. J. Mater. Sci. Technol., 2021, 77(0): 90-99. |
[3] | Jinlong Du, Cai Li, Zumin Wang, Yuan Huang. Direct alloying of immiscible molybdenum-silver system and its thermodynamic mechanism [J]. J. Mater. Sci. Technol., 2021, 65(0): 18-28. |
[4] | Jing Wang, Lu Han, Xiaohu Li, Dongguang Liu, Laima Luo, Yuan Huang, Yongchang Liu, Zumin Wang. Supermodulus effect by grain-boundary wetting in nanostructured multilayers [J]. J. Mater. Sci. Technol., 2021, 65(0): 202-209. |
[5] | Yongxin Ruan, Changrong Li, Yuping Ren, Xiaopan Wu, R. Schmid-Fetzer, Cuiping Guo, Zhenmin Du. Phases equilibrated with long-period stacking ordered phases in the Mg-rich corner of the Mg-Y-Zn system [J]. J. Mater. Sci. Technol., 2021, 68(0): 147-159. |
[6] | Haiyang Yu, Zhenzhu Wang, Jiangfeng Ni, Liang Li. Freestanding nanosheets of 1T-2H hybrid MoS2 as electrodes for efficient sodium storage [J]. J. Mater. Sci. Technol., 2021, 67(0): 237-242. |
[7] | Jingbin Zhang, Yinrui Sun, Zhijie Ji, Haiwen Luo, Feng Liu. Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability [J]. J. Mater. Sci. Technol., 2021, 75(0): 139-153. |
[8] | Risheng Pei, Sandra Korte-Kerzel, Talal Al-Samman. Normal and abnormal grain growth in magnesium: Experimental observations and simulations [J]. J. Mater. Sci. Technol., 2020, 50(0): 257-270. |
[9] | Hui Yong, Shihai Guo, Zeming Yuan, Yan Qi, Dongliang Zhao, Yanghuan Zhang. Phase transformation, thermodynamics and kinetics property of Mg90Ce5RE5 (RE = La, Ce, Nd) hydrogen storage alloys [J]. J. Mater. Sci. Technol., 2020, 51(0): 84-93. |
[10] | Ying-Jun Gao, Qian-Qian Deng, Zhe-yuan Liu, Zong-Ji Huang, Yi-Xuan Li, Zhi-Rong Luo. Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain: Atomistic and continuum modeling [J]. J. Mater. Sci. Technol., 2020, 49(0): 236-250. |
[11] | Ruishan Xie, Qingyu Shi, Gaoqiang Chen. Improved distortion prediction in additive manufacturing using an experimental-based stress relaxation model [J]. J. Mater. Sci. Technol., 2020, 59(0): 83-91. |
[12] | Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties [J]. J. Mater. Sci. Technol., 2020, 42(0): 229-240. |
[13] | Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 1-9. |
[14] | Arash Afshar, Dorina Mihut. Enhancing durability of 3D printed polymer structures by metallization [J]. J. Mater. Sci. Technol., 2020, 53(0): 185-191. |
[15] | Qun Luo, Yanlin Guo, Bin Liu, Yujun Feng, Jieyu Zhang, Qian Li, Kuochih Chou. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44(0): 171-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||