Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (1): 102-111    DOI: 10.1016/j.jmst.2017.11.015
Orginal Article Current Issue | Archive | Adv Search |
Correlation between microstructures and mechanical properties of high-speed friction stir welded aluminum hollow extrusions subjected to axial forces
Xiangqian Liuab, Huijie Liua*(), Tianhao Wanga, Xiangguo Wanga, Si Yanga
a State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
b Luoyang Ship Material Research Institute, Luoyang 471023, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The AA6005A-T6 aluminum hollow extrusions were friction stir welded at a high welding speed of 2000 mm/min and various axial forces. The results show that the nugget zone (NZ) is characterized by fine equiaxed grains, in which a low density of equilibrium phase β is observed. The grains in the thermo-mechanically affected zone (TMAZ) are elongated, and the highest density of dislocations and a low density of β' precipitates can be found in grains. The heat affected zone (HAZ) only experiences a low thermal cycle, and a high density of β” precipitates and a low density of β' precipitates remain in the coarsened grains. The microhardness evolutions in the NZ, TMAZ and HAZ are governed by the grain refinement and dislocation strengthening, the dislocation and precipitation strengthening, and the precipitation and solid solution strengthening, respectively. When increasing the axial force, the changing trend of one strengthening mechanism is contrary to the other in each zone, and the microhardness increases in different zones. As a result, the tensile strength roughly increases with raising the axial force, and all joints show good tensile properties as the high welding speed inhibits the coarsening and dissolution of strengthening precipitates significantly.

Key words:  Aluminum hollow extrusions      High-speed friction stir welding      Microstructures      Mechanical properties     
Received:  08 March 2017     
Corresponding Authors:  Liu Huijie     E-mail:  liuhj@hit.edu.cn

Cite this article: 

Xiangqian Liu, Huijie Liu, Tianhao Wang, Xiangguo Wang, Si Yang. Correlation between microstructures and mechanical properties of high-speed friction stir welded aluminum hollow extrusions subjected to axial forces. J. Mater. Sci. Technol., 2018, 34(1): 102-111.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2017.11.015     OR     https://www.jmst.org/EN/Y2018/V34/I1/102

Chemical composition (wt%) Mechanical properties
Si Mg Mn Fe Cu Cr Zn Ti Al Tensile strength Elongation Vickers hardness
0.7 0.6 0.5 0.35 0.3 0.3 0.2 0.1 Bal 294 MPa 6.2% 90-95 Hv
Table 1  Chemical compositions and mechanical properties of AA6005A-T6 aluminum hollow extrusions.
Fig. 1.  High-speed friction stir welding process: (a) schematic view, (b) experimental set up.
Dimensions of tool Welding parameters
Shoulder diameter Pin diameter Pin length Rotation speed Welding speed Axial force Tilt angle
10 mm 7.4 mm 3.8 mm 2000 r/min 2000 mm/min 15-21 kN 1.5°
Table 2  Dimensions of tool and welding parameters used in the experiments.
Fig. 2.  Macrostructures of the HSFSW joints produced using different axial forces: (a) 15 kN, (b) 17 kN, (c) 19 kN, (d) 21 kN.
Fig. 3.  Widths of NZ at different depths and depth of NZ of the welds welded using various axial forces.
Fig. 4.  Optical pictures showing grain structures in different zones of the HSFSW joints: (a) BM, (b) HAZ, (c) TMAZ on the RS, (d) TMAZ on the AS.
Fig. 5.  TEM picture showing fine recrystallized grain in the NZ.
Fig. 6.  Welding thermal cycles in different zones of the HSFSW joints.
Fig. 7.  Optical pictures showing grain structures in the NZ obtained at different axial forces: (a) 15 kN, (b) 17 kN, (c) 19 kN, (d) 21 kN.
Fig. 8.  Evolutions of the average grain size with the axial force in the NZ.
Fig. 9.  TEM microstructures in the BM: (a) dislocations, (b) precipitates observed in low magnification, (c) precipitates observed in high magnification, (d) precipitate-free zone (PFZ) along the grain boundary.
P(kN) TP (°C) tD (s)
NZ TMAZ HAZ NZ TMAZ HAZ
15 434 370 305 2.9 2.6 2.2
17 473 401 332 3.8 3.5 3.0
19 500 423 351 4.5 4.2 3.6
21 522 441 367 5.2 4.9 4.2
Table 3  Peak temperature and dwelling time at high temperature in different zones obtained using various axial forces.
Fig. 10.  Precipitates and PFZs observed in the HAZ produced at different axial forces: (a, b, c) 15 kN, (d, e, f) 21 kN.
Fig. 11.  Distribution characteristics of dislocations and precipitates in the TMAZ fabricated using different axial forces: (a, b, c) 15 kN, (d, e, f) 21 kN.
Fig. 12.  Distribution characteristics of dislocations and precipitates in the NZ obtained at different axial forces: (a, b) 15 kN, (c, d) 21 kN.
Fig. 13.  Effect of axial force on the microhardness distributions of the HSFSW joints.
Fig. 14.  Effect of axial force on the tensile properties of the HSFSW joints.
Fig. 15.  Fracture locations of the HSFSW joints welded at different axial forces: (a) 15 kN, (b) 17 kN, (c) 19 kN, (d) 21 kN.
Fig. 16.  Fracture surfaces of the HSFSW joints obtained at different axial forces: (a) 15 kN, (b) 17 kN, (c) 19 kN, (d) 21 kN.
[1] X. Lu, C.S. Zhang, G.Q. Zhao, Y.J. Guan, L. Chen, A.J. Gao, Mater. Des. 89(2016)737-748.
[2] L. Chen, G.Q. Zhao, J.Q. Yu, Int. J. Adv. Manuf. Tech. 79(2015) 2117-2125.
[3] G. Xie, D.J. Thompson, C.J.C.Jones, J. Sound. Vib. 293(2006) 921-932.
[4] H. Yonetani, Weld J. 22(2008) 701-704.
[5] J. Da Silva, J.M. Costa, A. Loureiro, J.M. Ferreira, Mater. Des. 51(2013) 315-322.
[6] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Mater. Des. 32(2011)535-549.
[7] T. Kawasaki, T. Makino, K. Masai, H. Ohba, Y. Ina, M. Ezumi, JSME Int. J. A 47(2004) 502-511.
[8] P.L. Threadgill, M.M.Z.Ahmed, J.P. Martin, J.G. Perrett, B.P. Wynne, Mater. Sci.Forum.638-642(2010) 1179-1184.
[9] H.J. Liu, J.C. Hou, H. Guo, Mater. Des. 50(2013) 872-878.
[10] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Mater. Des. 32(2011)2878-2890.
[11] F. Marie, B. Guerin, D. Deloison, D. Aliaga, C. Desrayaud, TWI, 2008.
[12] H. Taka, M. Ezumi, T. Kawasaki, Y. Ina, T. Matsunaga, H. Okamura, J. Light Met.Weld. Constr. 41(2003) 13-17.
[13] M.M. Shahri, R. Sandstr?, Int.J. Fatigue. 32(2010) 302-309.
[14] K. Elangovan, V. Balasubramanian, M. Valliappan, Int. J. Adv. Manuf. Tech. 38(2008) 285-295.
[15] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Mater. Des. 32(2011)535-549.
[16] S. Rajakumar, V. Balasubramanian, Mater. Des. 40(2012) 17-35.
[17] S. Rajakumar, V. Balasubramanian, Mater. Manuf. Process. 27(2012) 78-83.
[18] Y. Li, L.E. Murr, J.C. McClure, Mat. Sci. Eng. A 271 (1999) 213-223.
[19] Y.S. Sato, M. Urata, H. Kokawa, Metall. Mater. Trans. A 33 (2002) 625-635.
[20] P.B. Prangnell, C.P. Heason, Acta. Mater. 53(2005) 3179-3192.
[21] J.Q. Su, T.W. Nelson, R.S. Mishra, M.W. Mahoney, Acta Mater. 51(2003)713-729.
[22] C. Gao, Z.X. Zhu, J. Han, H.J. Li, Mat. Sci. Eng. A 639 (2015) 489-499.
[23] T. Morita, M. Yamanaka, Mat. Sci. Eng. A 595 (2014) 196-204.
[24] S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Tr Holt, U. Tundal, O. Reiso, Acta.Mater. 46(1998) 3283-3298.
[25] Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, T. Hashimoto, Metall. Mater. Trans.A 30 (1999) 3125-3130.
[26] M. Cabibbo, H.J.McQueen, E.Evangelista, S. Spigarelli, M. Di Paola, A. Falchero,Mat. Sci. Eng. A 460-461(2007) 86-94.
[27] A.J. Ardell, Metall. Trans. A 16 (1985) 2131-2165.
[28] P. Dong, H.M. Li, D.Q. Sun, W.B. Gong, J. Liu, Mater. Des. 45(2013) 524-531.
[29] A. Simar, J. Lecomte-Beckers, T. Pardoen, B. de Meester, Sci.Technol. Weld. Joi.11(2006) 170-177.
[30] A. Gaber, A.M. Ali, K. Matsuda, T. Kawabata, T. Yamazaki, S. Ikeno, J. Alloy.Compd. 432(2007) 149-155.
[31] C. Gallais, A. Denquin, Y. Bréchet, G. Lapasset, Mat. Sci. Eng. A 496 (2008)77-89.
[32] G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, Acta. Mater. 46(1998)3893-3904.
[1] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[2] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[3] Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties[J]. 材料科学与技术, 2020, 40(0): 15-23.
[4] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[5] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[6] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[7] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[8] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[9] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[10] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[11] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[12] Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel[J]. 材料科学与技术, 2020, 42(0): 75-84.
[13] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[14] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[15] Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process[J]. 材料科学与技术, 2020, 42(0): 17-27.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.