J. Mater. Sci. Technol. ›› 2022, Vol. 129: 87-95.DOI: 10.1016/j.jmst.2022.04.023
• Research Article • Previous Articles Next Articles
Jingyu Panga,b, Ting Xiongc, Wenfan Yanga,b, Hualong Gea,b, Xiaodong Zhenga,b, Miao Songd, Hongwei Zhanga, Shijian Zhenga,e,*()
Received:
2022-02-10
Revised:
2022-03-25
Accepted:
2022-04-01
Published:
2022-05-15
Online:
2022-05-15
Contact:
Shijian Zheng
About author:
* Institute of Metal Research, Chinese Academy of Sciences, 7, Shenyang 110016, China. E-mail address: sjzheng@hebut.edu.cn (S. Zheng).Jingyu Pang, Ting Xiong, Wenfan Yang, Hualong Ge, Xiaodong Zheng, Miao Song, Hongwei Zhang, Shijian Zheng. Atomic scale structure dominated FCC and B2 responses to He ion irradiation in eutectic high-entropy alloy AlCoCrFeNi2.1[J]. J. Mater. Sci. Technol., 2022, 129: 87-95.
Fig. 1. (a) SRIM simulation of He ion irradiation damage and He concentration with depth for FCC and B2 phases in AlCoCrFeNi2.1. Micron-scale TEM images of irradiated samples at (b) 298 K and (c) 723 K.
Phases | Al | Co | Cr | Fe | Ni |
---|---|---|---|---|---|
Nominal | 16.39 | 16.39 | 16.39 | 16.39 | 34.42 |
FCC | 9.04 | 19.41 | 20.77 | 18.53 | 32.23 |
B2 | 27.56 | 13.24 | 5.55 | 10.21 | 43.42 |
Table 1. Chemical composition (at.%) of as-cast eutectic AlCoCrFeNi2.1 HEA at different phases.
Phases | Al | Co | Cr | Fe | Ni |
---|---|---|---|---|---|
Nominal | 16.39 | 16.39 | 16.39 | 16.39 | 34.42 |
FCC | 9.04 | 19.41 | 20.77 | 18.53 | 32.23 |
B2 | 27.56 | 13.24 | 5.55 | 10.21 | 43.42 |
Fig. 2. Focused cross-section TEM images of AlCoCrFeNi2.1 samples irradiated by He ions at 298 K: (a) FCC phase, (b) B2 phase; at 723 K: (c) FCC phase, (d) B2 phase. Bubble concentration region is the area between the yellow dashed lines (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 3. Cross-section (a) TEM and HR-STEM images of (b) FCC and (c) B2 irradiated by He ions at 298 K; (d) He bubble size distribution in FCC and B2 phases at 298 K irradiation.
Irradiation temperature | Phase | ABS (nm) | BVRB2/ BVRFCC |
---|---|---|---|
298 K | FCC | 1.21 ± 0.21 | 2.76 ± 0.51 |
B2 | 2.38 ± 0.50 | ||
723 K | FCC | 3.00 ± 1.01 | 2.70 ± 0.68 |
B2 | 5.99 ± 1.26 |
Table 2. The average bubble size (ABS) and bubble volume ratio between B2 and FCC (BVRB2/BVRFCC) after 298 K and 723 K irradiation.
Irradiation temperature | Phase | ABS (nm) | BVRB2/ BVRFCC |
---|---|---|---|
298 K | FCC | 1.21 ± 0.21 | 2.76 ± 0.51 |
B2 | 2.38 ± 0.50 | ||
723 K | FCC | 3.00 ± 1.01 | 2.70 ± 0.68 |
B2 | 5.99 ± 1.26 |
Fig. 4. Cross-section (a) TEM and HR-STEM images of (b) FCC and (c) B2 irradiated by He ions at 723 K; (d) He bubble size distribution in FCC and B2 phases at 723 K irradiation.
Fig. 5. Electron diffraction patterns (EDPs) of FCC (top row) and B2 phases (bottom row) before and after irradiation; (a) unirradiated, (b) 298 K irradiated, (c) 723 K irradiated of FCC phase; and (d) unirradiated, (e) 298 K irradiated, (f) 723 K irradiated of B2 phase. Red indices represent the superlattice spots.
Fig. 6. Dark-field TEM images of L12 phases in FCC for: (a) unirradiated, (b) 298 K irradiated, and (c) 723 K irradiated. The bright contrast points are the L12 particles. The red circles represent the selected area of the objective aperture, with the superlattice spots.
Fig. 7. IFFT mode of HR-HAADF-STEM images for FCC and B2 phases after irradiation: (a) FCC phase after 298 K irradiation, (b) B2 phase after 298 K irradiation, (c) FCC phase after 723 K irradiation, (d) B2 phase after 723 K irradiation. The dark spaces in the images are He bubbles after irradiation.
Fig. 8. Inverted and auto-correlated EDPs and relative order degree profiles of the B2 phase when: (a, d) unirradiated, (b, e) 298 K irradiated and (c, f) 723 K irradiated.
Fig. 9. EDS maps of B2 phase showing the distribution of Al, Co, Cr, Fe, Ni. (a) unirradiated, (b) 298 K irradiated, and (c) 723 K irradiated. The EDS analysis focused on bubble concentration regions.
[1] |
S.J. Zinkle, J.T. Busby, Mater. Today 12 (2009) 12-19.
DOI URL |
[2] |
S.J. Zinkle, G.S. Was, Acta Mater. 61 (2013) 735-758.
DOI URL |
[3] |
N. A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, S.J. Zinkle, Acta Mater. 113 (2016) 230-244.
DOI URL |
[4] |
S.J. Zinkle, L.L. Snead, Ann. Rev. Mater. Res. 44 (2014) 241-267.
DOI URL |
[5] |
Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Beland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, W.J. Weber, Nat. Commun. 6 (2015) 8736.
DOI URL |
[6] |
C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, M. R. He, I.M. Robertson, W.J. Weber, L. Wang, Nat. Commun. 7 (2016) 13564.
DOI URL |
[7] |
Z. Fan, S. Zhao, K. Jin, D. Chen, Y.N. Osetskiy, Y. Wang, H. Bei, K.L. More, Y. Zhang, Acta Mater. 164 (2019) 283-292.
DOI URL |
[8] |
C. Lu, T. Yang, K. Jin, G. Velisa, P. Xiu, M. Song, Q. Peng, F. Gao, Y. Zhang, H. Bei, W.J. Weber, L. Wang, Mater. Res. Lett. 6 (2018) 584-591.
DOI URL |
[9] | J.F. Stubbins, J. Nucl. Mater. (1986) 748- 753 141-143. |
[10] |
Z. Chen, L.L. Niu, Z. Wang, L. Tian, L. Kecskes, K. Zhu, Q. Wei, Acta Mater. 147 (2018) 100-112.
DOI URL |
[11] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Res. Lett. 4 (2016) 174-179.
DOI URL |
[12] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227 - +.
DOI URL |
[13] |
C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, M. Ghazisaeidi, Nat. Commun. 9 (2018) 1363.
DOI URL |
[14] |
J. Pang, T. Xiong, X. Wei, Z. Zhu, B. Zhang, Y. Zhou, X. Shao, Q. Jin, S. Zheng, X. Ma, Materialia 6 (2019) 100275.
DOI URL |
[15] |
J. Pang, H. Zhang, L. Zhang, Z. Zhu, H. Fu, H. Li, A. Wang, Z. Li, H. Zhang, J. Mater. Sci. Technol. 78 (2020) 74-80.
DOI URL |
[16] |
Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen, Y. Wang, M. Zhang, H. Wu, X. Liu, H. Wang, S. Jiang, Z. Lu, J. Mater. Sci. Technol. 62 (2021) 214-220.
DOI |
[17] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[18] |
Z. Wu, H. Bei, Mater. Sci. Eng. A 640 (2015) 217-224.
DOI URL |
[19] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227.
DOI URL |
[20] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 (2014) 107-123.
DOI URL |
[21] |
Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, J. Mater. Sci. Technol. 35 (2019) 369-373.
DOI URL |
[22] |
D.S. Aidhy, C. Lu, K. Jin, H. Bei, Y. Zhang, L. Wang, W.J. Weber, Acta Mater. 99 (2015) 69-76.
DOI URL |
[23] |
K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, H. Bei, Scr. Mater. 119 (2016) 65-70.
DOI URL |
[24] |
C. Lu, K. Jin, L.K. Béland, F. Zhang, T. Yang, L. Qiao, Y. Zhang, H. Bei, H.M. Chris- ten, R.E. Stoller, L. Wang, Sci. Rep. 6 (2016) 19994.
DOI URL |
[25] |
Z. Zhang, E.H. Han, C. Xiang, J. Mater. Sci. Technol. 84 (2021) 230-238.
DOI URL |
[26] |
L. Yang, H. Ge, J. Zhang, T. Xiong, Q. Jin, Y. Zhou, X. Shao, B. Zhang, Z. Zhu, S. Zheng, X. Ma, J. Mater. Sci. Technol. 35 (2019) 300-305.
DOI URL |
[27] |
S.Q. Xia, X. Yang, T.F. Yang, S. Liu, Y. Zhang, JOM 67 (2015) 2340-2344.
DOI URL |
[28] |
S.-q. Xia, Z. Wang, T.-f. Yang, Y. Zhang, J. Iron Steel Res., Int. 22 (2015) 879-884.
DOI URL |
[29] |
S. Xia, M.C. Gao, T. Yang, P.K. Liaw, Y. Zhang, J. Nucl. Mater. 480 (2016) 100-108.
DOI URL |
[30] |
Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Sci. Rep. 4 (2014) 6200.
DOI URL |
[31] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Sci. Eng. A 675 (2016) 99-109.
DOI URL |
[32] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
[33] |
X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, Y. Zhao, Acta Mater. 141 (2017) 59-66.
DOI URL |
[34] |
T. Xiong, W. Yang, S. Zheng, Z. Liu, Y. Lu, R. Zhang, Y. Zhou, X. Shao, B. Zhang, J. Wang, F. Yin, P.K. Liaw, X. Ma, J. Mater. Sci. Technol. 65 (2020) 216-227.
DOI URL |
[35] |
Y.H. Meng, F.H. Duan, J. Pan, Y. Li, Intermetallics 111 (2019) 106515.
DOI URL |
[36] |
J.L. Li, Z. Li, Q. Wang, C. Dong, P.K. Liaw, Acta Mater. 197 (2020) 10-19.
DOI URL |
[37] |
W.J. Weber, Y. Zhang, Curr. Opin. Solid State Mater. Sci. 23 (2019) 100757.
DOI URL |
[38] |
T. Xiong, S. Zheng, J. Pang, X. Ma, Scr. Mater. 186 (2020) 336-340.
DOI URL |
[39] |
H.C. Liu, T.E. Mitchell, Acta Metall. 31 (1983) 863-872.
DOI URL |
[40] |
G.J.C. Carpenter, E.M. Schulson, J. Nucl. Mater. 73 (1978) 180-189.
DOI URL |
[41] |
L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J. C. Neuefeind, Z. Tang, P.K. Liaw, Nat. Commun. 6 (2015) 5964.
DOI PMID |
[42] |
W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51.
DOI URL |
[43] |
H. Trinkaus, B.N. Singh, J. Nucl. Mater. 323 (2003) 229-242.
DOI URL |
[44] | S.J. Zinkle, J. Steven, in: Comprehensive Nuclear Materials, Elsevier Ltd., 2012, pp. 65-98. |
[45] | S.I. Golubov, A. Barashev, R.E. Stoller, Compr. Nucl. Mater. 1 (2012) 357-391. |
[46] |
W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai, J. Mater. Sci. Technol. 101 (2022) 226-233.
DOI |
[47] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[48] |
C. Parkin, M. Moorehead, M. Elbakhshwan, J. Hu, W.Y. Chen, M. Li, L. He, K. Sridharan, A. Couet, Acta Mater. 198 (2020) 85-99.
DOI URL |
[49] |
T.N. Yang, C. Lu, G. Velisa, K. Jin, P. Xiu, Y. Zhang, H. Bei, L. Wang, Scr. Mater. 158 (2019) 57-61.
DOI URL |
[50] |
Y. Tong, G. Velisa, S. Zhao, W. Guo, T. Yang, K. Jin, C. Lu, H. Bei, J.Y.P. Ko, D.C. Pa- gan, Y. Zhang, L. Wang, F.X. Zhang, Materialia 2 (2018) 73-81.
DOI URL |
[51] | E. Wakai, T. Ezawa, J. Imamura, T. Takenaka, T. Tanabe, R. Oshima, J. Nucl. Mater. (2002) 367- 373 307-311. |
[52] | K. Fukumoto, A. Kimura, H. Matsui, J. Nucl. Mater. 258-263 (1998) 1431-1436. |
[53] |
J. Ball, G. Gottstein, Intermetallics 2 (3) (1994) 205-219.
DOI URL |
[54] |
C. Rentenberger, H.P. Karnthaler, Acta Mater. 56 (2008) 2526-2530.
DOI URL |
[55] |
J.S.C. Jang, C.C. Koch, J. Mater. Res. 5 (2011) 498-510.
DOI URL |
[56] |
M. Nastasi, J.W. Mayer, Mater. Sci. Rep. 6 (1991) 1-51.
DOI URL |
[57] |
E.M. Schulson, J. Nucl. Mater. 83 (1979) 239-264.
DOI URL |
[58] |
J. Lian, L. Wang, J. Chen, K. Sun, R.C. Ewing, J.Matt Farmer, L.A. Boatner, Acta Mater. 51 (2003) 1493-1502.
DOI URL |
[59] |
G. Martin, Phys. Rev. B 30 (1984) 1424-1436.
DOI URL |
[60] |
C.R. Lear, R.S. Averback, P. Bellon, A.E. Sand, M.A. Kirk, J. Mater. Res. 33 (2018) 3841-3848.
DOI URL |
[61] | J. Mayer, J.K. Hirvonen, M.R. Nastasi, in: Ion-Solid Interactions, Cambridge Uni- versity Press, Cambridge, 1996, pp. 191-217. |
[62] |
C.R. Lear, M. Song, M. Wang, G.S. Was, J. Nucl. Mater. 516 (2019) 125-134.
DOI |
[63] |
C. Sun, M. Kirk, M. Li, K. Hattar, Y. Wang, O. Anderoglu, J. Valdez, B.P. Uberuaga, R. Dickerson, S.A. Maloy, Acta Mater. 95 (2015) 357-365.
DOI URL |
[64] |
R. Visnov, J.A. Alonso, L.A. Girifalco, Metall. Trans. A 11 (1980) 1747-1753.
DOI URL |
[65] | R. Hultgren, P. Desai, D. Hawkins, M. Gleiser, K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals Metal Park, 1973. |
[1] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[2] | Siyuan Wei, Yakai Zhao, Jae-il Jang, Upadrasta Ramamurty. Rate-dependent mechanical behavior of single-, bi-, twinned-, and poly-crystals of CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 120(0): 253-264. |
[3] | Jia Li, Baobin Xie, Quanfeng He, Bin Liu, Xin Zeng, Peter K. Liaw, Qihong Fang, Yong Yang, Yong Liu. Chemical-element-distribution-mediated deformation partitioning and its control mechanical behavior in high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 99-107. |
[4] | Xinfeng Li, Jing Yin, Jin Zhang, Yanfei Wang, Xiaolong Song, Yong Zhang, Xuechong Ren. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review [J]. J. Mater. Sci. Technol., 2022, 122(0): 20-32. |
[5] | Honglin Yan, Jianqiu Wang, Zhiming Zhang, Bright O. Okonkwo. Effects of cutting parameter on microstructure and corrosion behavior of 304 stainless steel in simulated primary water [J]. J. Mater. Sci. Technol., 2022, 122(0): 219-230. |
[6] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[7] | Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD [J]. J. Mater. Sci. Technol., 2022, 106(0): 257-269. |
[8] | Jiakang Tian, Yongqing Shen, Peizhi Liu, Haixia Zhang, Bingshe Xu, Yanhui Song, Jianguo Liang, Junjie Guo. Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis [J]. J. Mater. Sci. Technol., 2022, 127(0): 1-18. |
[9] | Xuli Liu, Yidong Wu, Yansong Wang, Jinbin Chen, Rui Bai, Lei Gao, Zhe Xu, William Yi Wang, Chengwen Tan, Xidong Hui. Enhanced dynamic deformability and strengthening effect via twinning and microbanding in high density NiCoFeCrMoW high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 127(0): 164-176. |
[10] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao, Dong Qiu. Anisotropy study of the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy additively manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 129(0): 228-239. |
[11] | Daixiu Wei, Wu Gong, Liqiang Wang, Bowen Tang, Takuro Kawasaki, Stefanus Harjo, Hidemi Kato. Strengthening of high-entropy alloys via modulation of cryo-pre-straining-induced defects [J]. J. Mater. Sci. Technol., 2022, 129(0): 251-260. |
[12] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[13] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[14] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[15] | S.B. Wang, C.F. Pan, B. Wei, X. Zheng, Y.X. Lai, J.H. Chen. Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si(-Sc) alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 216-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||