J. Mater. Sci. Technol. ›› 2022, Vol. 127: 1-18.DOI: 10.1016/j.jmst.2022.03.021
• Review Article • Next Articles
Jiakang Tiana, Yongqing Shena, Peizhi Liua, Haixia Zhanga, Bingshe Xua,b, Yanhui Songa,*(
), Jianguo Liangc,*(
), Junjie Guoa,*(
)
Received:2021-12-31
Revised:2022-03-29
Accepted:2022-03-31
Published:2022-11-10
Online:2022-11-10
Contact:
Yanhui Song,Jianguo Liang,Junjie Guo
About author:guojunjie@tyut.edu.cn (J. Guo)Jiakang Tian, Yongqing Shen, Peizhi Liu, Haixia Zhang, Bingshe Xu, Yanhui Song, Jianguo Liang, Junjie Guo. Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis[J]. J. Mater. Sci. Technol., 2022, 127: 1-18.
| Catalyst | Electrocatalysis performances | Empty Cell | Device performances | Year [Ref.] | ||||
|---|---|---|---|---|---|---|---|---|
| Empty Cell | Reaction | Electrolyte | Overpotential/E1/2(η vs RHE) | Tafel slope(mV dec−1) | Empty Cell | Zn-air battery | Water splitting | Empty Cell |
| Empty Cell | Open circuit potential | Cell voltage | Empty Cell | |||||
| NiFeO@MnOx | OER ORR | 0.1 M KOH | 1.54 V @5 mA cm−2 0.81 V | 37 N/A | 1.32 V | N/A | 2017[ | |
| rGO/CB/Co-Bi | OER ORR | 0.1 M KOH | 1.58 V @10mA cm−2 0.70 V | 95.5 69.2 | 1.35 V | N/A | 2018[ | |
| FeCo-DHO/NCNTs | OER ORR | 1.0 M KOH | 1.55 V @10 mA cm−2 0.86 V | 55 36 | 1.48 V | N/A | 2018[ | |
| CVN/CC | OER HER | 1.0 M KOH | 263 mV @10 mA cm−2 118 mV @10 mA cm−2 | 64.1 73.6 | N/A | 1.64 V @10 mA cm−2 | 2019[ | |
| (Ni, Fe)S2@MoS2 | OER HER | 1.0 M KOH | 270 mV @10 mA cm−2 130 mV @10 mA cm−2 | 43.21 101.22 | N/A | 1.56 V @10 mA cm−2 | 2019[ | |
| Co3(OH)2(HPO4)2 | OER HER | 1.0 M KOH | 182 mV @10 mA cm−2 82 mV @10 mA cm−2 | 69 91 | N/A | 1.68 V @10 mA cm−2 | 2019[ | |
| MoO3/Ni-NiO | OER HER | 1.0 M KOH | 347 mV @100 mA cm−2 62 mV @10 mA cm−2 | 60 59 | N/A | 1.55 V @10 mA cm−2 | 2020[ | |
| Ni/NiFeMoOx/NF | OER HER | 1.0 M KOH | 255 mV @10 mA cm−2 22 mV @10 mA cm−2 | 35 76 | N/A | 1.50 V @10 mA cm−2 | 2020[ | |
| a-MnOx/TiC | OER ORR | 0.1 M KOH | 1.56 V @10mA cm−2 0.80 V | 110 72 | 1.356 V | N/A | 2020[ | |
| NiCo2O4 @NiCoFe-OH | OER ORR | 1.0 M KOH 0.1 M KOH | 232 mV @10mA cm−2 0.77 V | 65.7 N/A | 1.42 V | N/A | 2020[ | |
| NCFPO-350 | OER ORR | 1.0 M KOH | 278 mV @10mA cm−2 0.74 V | 58.92 77 | 1.36 V | N/A | 2021[ | |
| ODAC-CoO-30 | OER ORR | 0.1 M KOH | 1.594 V @10mA cm−2 0.849 V | 73.2 68.6 | 1.45 V | N/A | 2021[ | |
Table 1. Summary of electrocatalysis and device performances for bifunctional AMCs in nearly five years (N/A denotes not available).
| Catalyst | Electrocatalysis performances | Empty Cell | Device performances | Year [Ref.] | ||||
|---|---|---|---|---|---|---|---|---|
| Empty Cell | Reaction | Electrolyte | Overpotential/E1/2(η vs RHE) | Tafel slope(mV dec−1) | Empty Cell | Zn-air battery | Water splitting | Empty Cell |
| Empty Cell | Open circuit potential | Cell voltage | Empty Cell | |||||
| NiFeO@MnOx | OER ORR | 0.1 M KOH | 1.54 V @5 mA cm−2 0.81 V | 37 N/A | 1.32 V | N/A | 2017[ | |
| rGO/CB/Co-Bi | OER ORR | 0.1 M KOH | 1.58 V @10mA cm−2 0.70 V | 95.5 69.2 | 1.35 V | N/A | 2018[ | |
| FeCo-DHO/NCNTs | OER ORR | 1.0 M KOH | 1.55 V @10 mA cm−2 0.86 V | 55 36 | 1.48 V | N/A | 2018[ | |
| CVN/CC | OER HER | 1.0 M KOH | 263 mV @10 mA cm−2 118 mV @10 mA cm−2 | 64.1 73.6 | N/A | 1.64 V @10 mA cm−2 | 2019[ | |
| (Ni, Fe)S2@MoS2 | OER HER | 1.0 M KOH | 270 mV @10 mA cm−2 130 mV @10 mA cm−2 | 43.21 101.22 | N/A | 1.56 V @10 mA cm−2 | 2019[ | |
| Co3(OH)2(HPO4)2 | OER HER | 1.0 M KOH | 182 mV @10 mA cm−2 82 mV @10 mA cm−2 | 69 91 | N/A | 1.68 V @10 mA cm−2 | 2019[ | |
| MoO3/Ni-NiO | OER HER | 1.0 M KOH | 347 mV @100 mA cm−2 62 mV @10 mA cm−2 | 60 59 | N/A | 1.55 V @10 mA cm−2 | 2020[ | |
| Ni/NiFeMoOx/NF | OER HER | 1.0 M KOH | 255 mV @10 mA cm−2 22 mV @10 mA cm−2 | 35 76 | N/A | 1.50 V @10 mA cm−2 | 2020[ | |
| a-MnOx/TiC | OER ORR | 0.1 M KOH | 1.56 V @10mA cm−2 0.80 V | 110 72 | 1.356 V | N/A | 2020[ | |
| NiCo2O4 @NiCoFe-OH | OER ORR | 1.0 M KOH 0.1 M KOH | 232 mV @10mA cm−2 0.77 V | 65.7 N/A | 1.42 V | N/A | 2020[ | |
| NCFPO-350 | OER ORR | 1.0 M KOH | 278 mV @10mA cm−2 0.74 V | 58.92 77 | 1.36 V | N/A | 2021[ | |
| ODAC-CoO-30 | OER ORR | 0.1 M KOH | 1.594 V @10mA cm−2 0.849 V | 73.2 68.6 | 1.45 V | N/A | 2021[ | |
Fig. 2. (a) Schematic illustration of the preparation process, (b) HRTEM and the corresponding SAED images, and (c) the electrochemical performance comparison of the nanosponge-like PdPtCuNiP HEMG. (Ref. [66] Copyright 2021, Wiley-VCH); (d) HRTEM and the corresponding SAED images, (e) XRD spectra, and (f, g) the electrochemical performance comparison of etched NiFeCoMnAl. (Ref. [67] Copyright 2021, Elsevier); (h, i) HAADF-STEM images with accompanying high-resolution EDX and SAED images and (j) the electrochemical performance comparison of a CoFeNiLaPt HEMG-NP. (Ref. [55] Copyright 2019, Springer Nature).
Fig. 3. (a) High-magnification TEM images, (b) HRTEM images with associated FFT, and (c) XRD pattern of RuCu NSs. (Ref. [69] Copyright 2019, Wiley‐VCH); (d) TEM images, (e) the corresponding SAED pattern, and (f) LSV plots of aMOF-NC. (Ref. [70] Copyright 2019, Wiley‐VCH); (g) TEM image, (h) HRTEM image and (i) XRD pattern of SNiFe0.5Sn-A. (Ref. [71]).
Fig. 4. HRTEM image of (a) NiMoP2-Ni2P/CC (Ref. [78] Copyright 2021, Elsevier), (b) (NixFe1-x)2P (Ref. [79] Copyright 2020, American Chemical Society), and (c) Ag/NCMO/NF (Ref. [80] Copyright 2021, Wiley-VCH). (d-f) HRTEM and (g) aberration-corrected STEM images about the different ratios of amorphous PtOx and crystalline Pt in Pt/α-PtOx/WO3 synthesized in different temperatures and (d1-g2) the corresponding FFT patterns. (Ref. [81] Copyright 2021, Wiley-VCH).
Fig. 5. (a) Diagram of the preparation and electrocatalytic pathway, (b-d) morphological characteristics of NixFe1-x-AHNA catalysts. (Ref. [82] Copyright 2020, Royal Society of Chemistry). (e) Illustration of the preparation and (f) HRTEM image of the hierarchical Ni-FeP/TiN/CC electrocatalyst. Symbol A shows the amorphous TiN surface. (Ref. [83] Copyright 2018, Elsevier).
Fig. 6. (a, b) HRTEM of PtPb/C nanoplate irradiated with the ion fluence of 2 × 1016 ions cm2 (PtPb/C irra-2). (c, d) ORR performance characterization of PtPb/C. (e) The structural variation of PtPb nanoplates. (Ref. [85] Copyright 2017, Wiley-VCH). (f) HRTEM image with SAED pattern and (g) Atomic-resolution HAADF-STEM image and (h) STEM with element mapping images of S-CoP. (i, j) HER performance characterization of S-CoP. (Ref. [86] Copyright 2020, Elsevier).
Fig. 7. (a) HRTEM image, (b, c) HER property characterization, and (d) schematic mechanisms of N-Pd/A-Co(II). (Ref. [90] Copyright 2021, Wiley-VCH). (e) Bright-field TEM image with the SAED pattern, (f) XRD pattern of Co2B-500, and (g) EXAFS spectra of Co2B, Co2B-500 and references Co foil (black) and CoO (gray). (Ref. [91] Copyright 2016, Wiley-VCH).
Fig. 8. (a) Schematic diagram illustrating preparation of Ir25Ni33Ta42 MG film on Si substrates. (b) HRTEM image with the corresponding SAED pattern of Ir25Ni33Ta42 MG film. (c) Polarization curves and (d) Tafel slopes for Ir25Ni33Ta42/Si, Ir/Si, and Pt/Si electrodes. (Ref. [100] Copyright 2019, Wiley-VCH).
Fig. 9. (a) TEM image and the corresponding SAED pattern of Pd NPs-Bis-24h. HRTEM images of (b) Pd NP-OAm, (c) Pd NP-Bis-1h, and (d) Pd NP-Bis-24h. (e) XRD patterns and (f) polarization curves of Pd NP catalysts. (Ref. [101] Copyright 2020, Wiley-VCH). (g) HRTEM image and structural model of a-PdCu NW. (h) Electrochemical performance of a-PdCu NW. (Ref. [102] Copyright 2021, American Chemical Society). (i) HAADF-STEM image, (j) HRTEM image and (k, l) the corresponding FFT patterns of the selected areas in (j) of porous Pd metallene. (Ref. [103] Copyright 2021, Wiley-VCH).
Fig. 10. (a) Schematic illustration of the preparation process, (b) TEM image with the corresponding SAED pattern, (c) HRTEM, and (d) OER performance of a-NiFeMo oxides. (Ref. [107] Copyright 2019, Wiley-VCH). (e) Schematic illustration of the top-down strategy. (f) TEM image and the corresponding SAED pattern of a-LNF(t-d). (g) OER performance of a-LNF(t-d). (Ref. [109] Copyright 2019, Wiley-VCH).
Fig. 11. (a) Schematic illustration of the preparation process, (b) TEM image, (c) the corresponding SEAD pattern, (d) HRTEM image, (e, f) HER property of A-NiCo LDH/NF. (Ref. [120] Copyright 2020, Elsevier). (g) TEM image and (h) HRTEM image with (i, j) the corresponding FFT patterns of the selected areas in (h) of CoV-Fe0.28 sample. (k, l) HER performance of CoV-Fe. (Ref. [121] Copyright 2020, Wiley-VCH).
Fig. 12. (a) Schematic illustration for preparing a-Ni(OH)2 and a-NixFey(OH)2 for boosted OER electrocatalysis. (b) TEM, SEM image, (c) The corresponding SAED pattern of a-Ni0.75Fe0.25(OH)2. (d) HRTEM image and the pore-size distribution curve (inset) of a-Ni0.75Fe0.25(OH)2. HAADF-STEM images of (e) a-Ni(OH)2 and (f) a-Ni0.75Fe0.25(OH)2. (Ref. [122] Copyright 2021, Royal Society of Chemistry). (g) Schematic diagram of the preparation of V-CoFe LDH and V-Ce/CoFe LDH. (h) HRTEM image of V-Ce/CoFe LDH. (Ref. [123] Copyright 2020, Royal Society of Chemistry).
Fig. 13. (a) Synthetic procedure for nanoporous PdCuNi-S catalyst (b) TEM and (c) HRTEM images of PdCuNi-S catalyst. (d, e) HER performance of PdCuNi-S. (Ref. [125] Copyright 2019, Elsevier).
Fig. 14. (a) Schematic illustration of the a-CoMoPx/CF preparation. (b) TEM and (c, d) HRTEM images of a-CoMoPx/CF. (e, f) HER performance of a-CoMoPx/CF. (Ref. [140] Copyright 2020, Wiley-VCH).
Fig. 15. (a) TEM and (b) HRTEM images of 2D amorphous Fe-InPO4 triangular NSs. Insets of (a) and (b) are SAED pattern and FFT pattern, respectively. (c, d) OER performance of 2D amorphous Fe-InPO4. (Ref. [147] Copyright 2020, American Chemical Society).
| [1] |
G. Anandhababu, Y. Huang, D.D. Babu, M. Wu, Y. Wang, Adv. Funct. Mater. 28 (2018) 1706120.
DOI URL |
| [2] |
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, ACS Nano 9 (2015) 9507-9516.
DOI PMID |
| [3] | P.T. Babar, A.C. Lokhande, B.S. Pawar, M.G. Gang, E. Jo, C. Go, M.P. Suryawanshi, S.M. Pawar, J.H. Kim, Appl. Surf. Sci. 427 (2018) 253-259. |
| [4] |
J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, Y. Xie, Angew. Chem. Int. Ed. 54 (2015) 7399-7404.
DOI URL |
| [5] |
M.P. Browne, Z. Sofer, M. Pumera, Energy Environ. Sci. 12 (2019) 41-58.
DOI URL |
| [6] |
L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo, X. Huang, Nat. Commun. 7 (2016) 11850.
DOI URL |
| [7] |
L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.Y. Ma, D. Su, X. Huang, Science 354 (2016) 1410-1414.
DOI URL |
| [8] |
Z. Cai, Y. Bi, E. Hu, W. Liu, N. Dwarica, Y. Tian, X. Li, Y. Kuang, Y. Li, X.Q. Yang, H. Wang, X. Sun, Adv. Energy Mater. 8 (2018) 1701694.
DOI URL |
| [9] |
M. Wang, K. Jian, Z. Lv, D. Li, G. Fan, R. Zhang, J. Dang, J. Mater. Sci. Technol. 79 (2021) 29-34.
DOI URL |
| [10] |
G. Xi, L. Zuo, X. Li, Y. Jin, R. Li, T. Zhang, J. Mater. Sci. Technol. 70 (2021) 197-204.
DOI URL |
| [11] |
M. Xu, H. Sun, W. Wang, Y. Shen, W. Zhou, J. Wang, Z.G. Chen, Z. Shao, J. Mater. Sci. Technol. 39 (2020) 22-27.
DOI URL |
| [12] |
J. Zhu, Z. Xiong, J. Zheng, Z. Luo, G. Zhu, C. Xiao, Z. Meng, Y. Li, K. Luo, J. Mater. Sci. Technol. 35 (2019) 2543-2551.
DOI |
| [13] |
F. Bian, X. Wu, S. Li, G. Qin, X. Meng, Y. Wang, H. Yang, J. Mater. Sci. Technol. 92 (2021) 120-128.
DOI URL |
| [14] |
G. Fu, J. Wang, Y. Chen, Y. Liu, Y. Tang, J.B. Goodenough, J.M. Lee, Adv. Energy Mater. 8 (2018) 1802263.
DOI URL |
| [15] |
G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J.M. Lee, Y. Tang, Adv. Mater. 30 (2018) 1704609.
DOI URL |
| [16] |
X. Hu, Y. Chen, M. Zhang, G. Fu, D. Sun, J.M. Lee, Y. Tang, Carbon 144 (2019) 557-566.
DOI URL |
| [17] |
V. Jose, H. Hu, E. Edison, W. Manalastas, H. Ren, P. Kidkhunthod, S. Sreejith, A. Jayakumar, J.M.V. Nsanzimana, M. Srinivasan, J. Choi, J.M. Lee, Small Methods 5 (2021) 2000751.
DOI URL |
| [18] |
H. Wang, J. Li, K. Li, Y. Lin, J. Chen, L. Gao, V. Nicolosi, X. Xiao, J.M. Lee, Chem. Soc. Rev. 50 (2021) 1354-1390.
DOI PMID |
| [19] |
J. Chen, C. Fan, X. Hu, C. Wang, Z. Huang, G. Fu, J.M. Lee, Y. Tang, Small 15 (2019) 1901518.
DOI URL |
| [20] | G. Fu, Y. Wang, Y. Tang, K. Zhou, J.B. Goodenough, J.M. Lee, ACS Mater. Lett. 1 (2019) 123-131. |
| [21] |
V. Jose, J.M.V. Nsanzimana, H. Hu, J. Choi, X. Wang, J.M. Lee, Adv. Energy Mater. 11 (2021) 2100157.
DOI URL |
| [22] |
P. Prabhu, V. Jose, J.M. Lee, Matter 2 (2020) 526-553.
DOI URL |
| [23] |
P. Prabhu, J.M. Lee, Chem. Soc. Rev. 50 (2021) 6700-6719.
DOI PMID |
| [24] |
H. Wang, J. Chen, Y. Lin, X. Wang, J. Li, Y. Li, L. Gao, L. Zhang, D. Chao, X. Xiao, J.M. Lee, Adv. Mater. 33 (2021) 2008422.
DOI URL |
| [25] |
Q. An, F. Lv, Q. Liu, C. Han, K. Zhao, J. Sheng, Q. Wei, M. Yan, L. Mai, Nano Lett. 14 (2014) 6250-6256.
DOI URL |
| [26] |
Z. Chen, Y. Qin, D. Weng, Q. Xiao, Y. Peng, X. Wang, H. Li, F. Wei, Y. Lu, Adv. Funct. Mater. 19 (2009) 3420-3426.
DOI URL |
| [27] |
F. Cheng, J. Chen, Chem. Soc. Rev. 41 (2012) 2172-2192.
DOI URL |
| [28] | S.H. Choi, K.Y. Jung, Y.C. Kang, ACS Appl. Mater.Interfaces 7 (2015) 13952-13959. |
| [29] | Y. Cheng, S. Dou, J.P. Veder, S. Wang, M. Saunders, S.P. Jiang, ACS Appl. Mater.Interfaces 9 (2017) 8121-8133. |
| [30] |
J.Q. Sun, D.J. Yang, S. Lowe, L.J. Zhang, Y.Z. Wang, S.L. Zhao, P.R. Liu, Y. Wang, Z.Y. Tang, H.J. Zhao, X.D. Yao, Adv. Energy Mater. 8 (2018) 1801495.
DOI URL |
| [31] |
M.J. Wu, Q.L. Wei, G.X. Zhang, J.L. Qiao, M.X. Wu, J.H. Zhang, Q.J. Gong, S.H. Sun, Adv. Energy Mater. 8 (2018) 1801836.
DOI URL |
| [32] |
S. Dutta, A. Indra, Y. Feng, H. Han, T. Song, Appl. Catal. B Environ. 241 (2019) 521-527.
DOI URL |
| [33] | Y.K. Liu, S. Jiang, S.J. Li, L. Zhou, Z.H. Li, J.M. Li, M.F. Shao, Appl. Catal. B Envi-ron. 247 (2019) 107-114. |
| [34] |
P.W. Menezes, C. Panda, C. Walter, M. Schwarze, M. Driess, Adv. Funct. Mater. 29 (2019) 1808632.
DOI URL |
| [35] |
X. Li, Y. Wang, J. Wang, Y. Da, J. Zhang, L. Li, C. Zhong, Y. Deng, X. Han, W. Hu, Adv. Mater. 32 (2020) 2003414.
DOI URL |
| [36] |
Y.K. Li, G. Zhang, W.T. Lu, F.F. Cao, Adv. Sci. 7 (2020) 1902034.
DOI URL |
| [37] |
S.D. Song, W.J. Li, Y.P. Deng, Y.L. Ruan, Y.N. Zhang, X.H. Qin, Z.W. Chen, Nano Energy 67 (2020) 104208.
DOI URL |
| [38] |
S.M. Li, X.H. Yang, S.Y. Yang, Q.Z. Gao, S.S. Zhang, X.Y. Yu, Y.P. Fang, S.H. Yang, X. Cai, J. Mater. Chem. A 8 (2020) 5601-5611.
DOI URL |
| [39] |
D.S. Pan, P. Chen, L.L. Zhou, J.H. Liu, Z.H. Guo, J.L. Song, J. Power Sources 498 (2021) 229859.
DOI URL |
| [40] |
Y. Tian, X. Liu, L. Xu, D. Yuan, Y. Dou, J. Qiu, H. Li, J. Ma, Y. Wang, D. Su, S. Zhang, Adv. Funct. Mater. 31 (2021) 2101239.
DOI URL |
| [41] |
J. Yang, L. Lu, H. Wang, W. Shi, H. Zhang, Cryst. Growth Des. 6 (2006) 2155-2158.
DOI URL |
| [42] |
L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, Adv. Energy Mater. 9 (2019) 1803358.
DOI URL |
| [43] |
R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, M. Terrones, Acc. Chem. Res. 48 (2015) 56-64.
DOI URL |
| [44] |
L.T. Tung, X. Liu, P. Xin, Q. Wang, C. Gao, Y. Wu, Y. Jiang, Z. Hu, S. Huang, Z. Chen, J. Mater. Sci. Technol. 74 (2021) 168-175.
DOI URL |
| [45] |
K. Huang, Y. Xu, Y. Song, R. Wang, H. Wei, Y. Long, M. Lei, H. Tang, J. Guo, H. Wu, J. Mater. Sci. Technol. 65 (2021) 1-6.
DOI |
| [46] |
E.X. Han, Y.Y. Li, Q.H. Wang, W.Q. Huang, L. Luo, W. Hu, G.F. Huang, J. Mater. Sci. Technol. 35 (2019) 2288-2296.
DOI URL |
| [47] |
L. Mao, Y. Wu, C.C. Stoumpos, M.R. Wasielewski, M.G. Kanatzidis, J. Am. Chem. Soc. 139 (2017) 5210-5215.
DOI URL |
| [48] |
H. Liu, Y. Du, Y. Deng, P.D. Ye, Chem. Soc. Rev. 44 (2015) 2732-2743.
DOI URL |
| [49] |
K. Lu, Y. Liu, F. Lin, I.A. Cordova, S. Gao, B. Li, B. Peng, H. Xu, J. Kaelin, D. Coliz, C. Wang, Y. Shao, Y. Cheng, J. Am. Chem. Soc. 142 (2020) 12613-12619.
DOI URL |
| [50] |
Y. Xiong, A.R. Siekkinen, J. Wang, Y. Yin, M.J. Kim, Y. Xia, J. Mater. Chem. 17 (2007) 2600-2602.
DOI URL |
| [51] |
Y. Xiong, I. Washio, J. Chen, H. Cai, Z.Y. Li, Y. Xia, Langmuir 22 (2006) 8563-8570.
DOI URL |
| [52] |
Y. Xiong, I. Washio, J. Chen, M. Sadilek, Y. Xia, Angew. Chem. Int. Ed. 46 (2007) 4917-4921.
DOI URL |
| [53] |
Q. Lu, M. Zhao, J. Chen, B. Chen, C. Tan, X. Zhang, Y. Huang, J. Yang, F. Cao, Y. Yu, J. Ping, Z. Zhang, X.J. Wu, H. Zhang, Small 12 (2016) 4669-4674.
DOI URL |
| [54] |
Z. Lu, G. Chen, Y. Li, H. Wang, J. Xie, L. Liao, C. Liu, Y. Liu, T. Wu, Y. Li, A.C. Luntz, M. Bajdich, Y. Cui, J. Am. Chem. Soc. 139 (2017) 6270-6276.
DOI URL |
| [55] |
X. Luo, C. Liu, X. Wang, Q. Shao, Y. Pi, T. Zhu, Y. Li, X. Huang, Nano Lett. 20 (2020) 1967-1973.
DOI URL |
| [56] |
Q. Wu, M. Luo, J. Han, W. Peng, Y. Zhao, D. Chen, M. Peng, J. Liu, F.M.F. de Groot, Y. Tan, ACS Energy Lett. 5 (2020) 192-199.
DOI URL |
| [57] | C. Gao, H. Wang, S. Li, B. Liu, J. Yang, J. Gao, Z. Peng, Z. Zhang, Z. Liu, Elec-trochim. Acta 327 (2019) 134958. |
| [58] | J. Chen, Y. Yang, J. Su, P. Jiang, G. Xia, Q. Chen, ACS Appl. Mater.Interfaces 9 (2017) 3596-3601. |
| [59] |
L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo, X. Huang, Nat. Commun. 7 (2016) 11850.
DOI URL |
| [60] |
J. Ding, L. Bu, S. Guo, Z. Zhao, E. Zhu, Y. Huang, X. Huang, Nano Lett. 16 (2016) 2762-2767.
DOI URL |
| [61] |
K. Jiang, P. Wang, S. Guo, X. Zhang, X. Shen, G. Lu, D. Su, X. Huang, Angew. Chem. Int. Ed. 55 (2016) 9030-9035.
DOI URL |
| [62] |
W. Tong, B. Huang, P. Wang, L. Li, Q. Shao, X. Huang, Angew. Chem. Int. Ed. 59 (2020) 2649-2653.
DOI PMID |
| [63] |
W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang, F. Jiao, J. Am. Chem. Soc. 139 (2017) 1885-1893.
DOI URL |
| [64] |
Y. Pi, Q. Shao, P. Wang, J. Guo, X. Huang, Adv. Funct. Mater. 27 (2017) 1700886.
DOI URL |
| [65] |
H. Wang, R. Wei, X. Li, X. Ma, X. Hao, G. Guan, J. Mater. Sci. Technol. 68 (2021) 191-198.
DOI URL |
| [66] |
Z. Jia, K. Nomoto, Q. Wang, C. Kong, L. Sun, L.C. Zhang, S.X. Liang, J. Lu, J.J. Kruzic, Adv. Funct. Mater. 31 (2021) 2101586.
DOI URL |
| [67] |
M. Han, C. Wang, J. Zhong, J. Han, N. Wang, A. Seifitokaldani, Y. Yu, Y. Liu, X. Sun, A. Vomiero, H. Liang, Appl. Catal. B Environ. 301 (2022) 120764.
DOI URL |
| [68] |
M.W. Glasscott, A.D. Pendergast, S. Goines, A.R. Bishop, A.T. Hoang, C. Renault, J.E. Dick, Nat. Commun. 10 (2019) 2650.
DOI PMID |
| [69] |
Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao, X. Huang, Angew. Chem. Int. Ed. 58 (2019) 13983-13988.
DOI URL |
| [70] |
C. Liu, J. Wang, J. Wan, Y. Cheng, R. Huang, C. Zhang, W. Hu, G. Wei, C. Yu, Angew. Chem. Int. Ed. 59 (2020) 3630-3637.
DOI URL |
| [71] |
M. Chen, S. Lu, X.Z. Fu, J.L. Luo, Adv. Sci. 7 (2020) 1903777.
DOI URL |
| [72] |
S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Adv. Mater. 26 (2014) 2925-2930.
DOI URL |
| [73] |
Y.C. Lin, D.O. Dumcencon, Y.S. Huang, K. Suenaga, Nat. Nanotechnol. 9 (2014) 391-396.
DOI URL |
| [74] |
Z. Lin, G.H. Waller, Y. Liu, M. Liu, C.P. Wong, Nano Energy 2 (2013) 241-248.
DOI URL |
| [75] |
C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 137 (2015) 4347-4357.
DOI URL |
| [76] |
P.W. Menezes, C. Walter, J.N. Hausmann, R. Beltran-Suito, C. Schlesiger, S. Praetz, V.Y. Verchenko, A.V. Shevelkov, M. Driess, Angew. Chem. Int. Ed. 58 (2019) 16569-16574.
DOI URL |
| [77] |
M. Fang, D. Han, W.B. Xu, Y. Shen, Y. Lu, P. Cao, S. Han, W. Xu, D. Zhu, W. Liu, J.C. Ho, Adv. Energy Mater. 10 (2020) 2001059.
DOI URL |
| [78] |
G.Q. Tian, S.R. Wei, Z.T. Guo, S.W. Wu, Z.L. Chen, F.M. Xu, Y. Cao, Z. Liu, J.Q. Wang, L. Ding, J.C. Tu, H. Zeng, J. Mater. Sci. Technol. 77 (2021) 108-116.
DOI URL |
| [79] |
S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, ACS Catal. 10 (2020) 9086-9097.
DOI URL |
| [80] |
D. Li, Y.Y. Qin, J. Liu, H.Y. Zhao, Z.J. Sun, G.B. Chen, D.Y. Wu, Y.Q. Su, S.J. Ding, C.H. Xiao, Adv. Funct. Mater. 32 (2022) 2107056.
DOI URL |
| [81] |
L.P. Xiao, G. Li, Z. Yang, K. Chen, R.S. Zhou, H.G. Liao, Q.C. Xu, J. Xu, Adv. Funct. Mater. 31 (2021) 2100982.
DOI URL |
| [82] |
C.W. Liang, P.C. Zou, A. Nairan, Y.Q. Zhang, J.X. Liu, K.W. Liu, S.Y. Hu, F.Y. Kang, H.J. Fan, C. Yang, Energy Environ. Sci. 13 (2020) 86-95.
DOI URL |
| [83] |
X. Peng, A.M. Qasim, W.H. Jin, L. Wang, L.S. Hu, Y.P. Miao, W. Li, Y. Li, Z.T. Liu, K.F. Huo, K.Y. Wong, P.K. Chu, Nano Energy 53 (2018) 66-73.
DOI URL |
| [84] | L.D.Y. Wang, X.B. Ge, Y.X. Li, J. Liu, L.Y. Huang, L.X. Feng, Y. Wang, J. Mater. Chem.A 5 (2017) 4331-4334. |
| [85] |
Y. Sun, Y. Liang, M. Luo, F. Lv, Y. Qin, L. Wang, C. Xu, E. Fu, S. Guo, Small 14 (2018) 1702259.
DOI URL |
| [86] |
R. Xu, T. Jiang, Z. Fu, N. Cheng, X. Zhang, K. Zhu, H. Xue, W. Wang, J. Tian, P. Chen, Nano Energy 78 (2020) 105347.
DOI URL |
| [87] |
B.T. Sneed, A.P. Young, C.K. Tsung, Nanoscale 7 (2015) 12248-12265.
DOI URL |
| [88] |
A. Chen, J.M. Hu, P. Lu, T. Yang, W. Zhang, L. Li, T. Ahmed, E. Enriquez, M. Weigand, Q. Su, H. Wang, J.X. Zhu, J.L. MacManus-Driscoll, L.Q. Chen, D. Yarotski, Q. Jia, Sci. Adv. 2 (2016) e1600245.
DOI URL |
| [89] |
A. Chen, Z. Harrell, P. Lu, E. Enriquez, L. Li, B. Zhang, P. Dowden, C. Chen, H. Wang, J.L. MacManus-Driscoll, Q. Jia, Adv. Funct. Mater. 29 (2019) 1900442.
DOI URL |
| [90] |
L. Li, Y.J. Ji, X.L. Luo, S.Z. Geng, M.M. Fang, Y.C. Pi, Y.Y. Li, X.Q. Huang, Q. Shao, Small 17 (2021) 2103798.
DOI URL |
| [91] |
J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler, W. Schuhmann, Adv. Energy Mater. 6 (2016) 1502313.
DOI URL |
| [92] |
W. Lei, Z. Zhenhua, G. Wenpei, M. Tristan, R. David, G. Michael, P. Xiaoqing, W. Chao, G. Jeffrey, Science 363 (2019) 870-874.
DOI URL |
| [93] |
W. Haotian, X. Shicheng, T. Charlie, L. Yuzhang, L. Chong, Z. Jie, L. Yayuan, Y. Hongyuan, A.P. Frank, B.P. Fritz, K.N. Jens, C. Yi, Science 354 (2016) 1031-1036.
DOI URL |
| [94] |
T. He, W. Wang, F. Shi, X. Yang, X. Li, J. Wu, Y. Yin, M. Jin, Nature 598 (2021) 76-81.
DOI URL |
| [95] |
Z. Sen, Z. Xu, J. Guangming, Z. Huiyuan, G. Shaojun, S. Dong, L. Gang, S. Shouheng, J. Am. Chem. Soc. 136 (2014) 7734-7739.
DOI URL |
| [96] |
Z. Kong, Y. Maswadeh, J.A. Vargas, S. Shan, Z.P. Wu, H. Kareem, A.C. Leff, D.T. Tran, F. Chang, S. Yan, S. Nam, X. Zhao, J.M. Lee, J. Luo, S. Shastri, G. Yu, V. Petkov, C.J. Zhong, J. Am. Chem. Soc. 142 (2020) 1287-1299.
DOI URL |
| [97] |
W. Zhu, H. Yuan, F. Liao, Y. Shen, H. Shi, Y. Shi, L. Xu, M. Ma, M. Shao, Chem. Eng. J. 389 (2020) 124240.
DOI URL |
| [98] |
S. Han, C. Wang, Y. Wang, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 60 (2021) 4474-4478.
DOI URL |
| [99] |
G. Meng, W. Sun, A .A. Mon, X. Wu, L. Xia, A. Han, Y. Wang, Z. Zhuang, J. Liu, D. Wang, Y. Li, Adv. Mater. 31 (2019) 1903616.
DOI URL |
| [100] |
Z.J. Wang, M.X. Li, J.H. Yu, X.B. Ge, Y.H. Liu, W.H. Wang, Adv. Mater. 32 (2020) 1906384.
DOI URL |
| [101] |
H. Cheng, N. Yang, G. Liu, Y. Ge, J. Huang, Q. Yun, Y. Du, C.J. Sun, B. Chen, J. Liu, H. Zhang, Adv. Mater. 32 (2020) 1902964.
DOI URL |
| [102] |
W.C. Wang, T.O. He, X.L. Yang, Y.M. Liu, C.Q. Wang, J. Li, A.D. Xiao, K. Zhang, X.T. Shi, M.S. Jin, Nano Lett. 21 (2021) 3458-3464.
DOI URL |
| [103] |
H. Yu, T. Zhou, Z. Wang, Y. Xu, X. Li, L. Wang, H. Wang, Angew. Chem. Int. Ed. 60 (2021) 12027-12031.
DOI URL |
| [104] |
K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sir-ringhaus, Nat. Mater. 10 (2011) 45-50.
DOI PMID |
| [105] |
S.M. Zhou, X.B. Miao, X. Zhao, C. Ma, Y.H. Qiu, Z.P. Hu, J.Y. Zhao, L. Shi, J. Zeng, Nat. Commun. 7 (2016) 11510.
DOI URL |
| [106] |
D.K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V.K. Yachandra, D.G. Nocera, J. Am. Chem. Soc. 134 (2012) 6801-6809.
DOI URL |
| [107] |
Y. Duan, Z.Y. Yu, S.J. Hu, X.S. Zheng, C.T. Zhang, H.H. Ding, B.C. Hu, Q.Q. Fu, Z.L. Yu, X. Zheng, J.F. Zhu, M.R. Gao, S.H. Yu, Angew. Chem. Int. Ed. 58 (2019) 15772-15777.
DOI PMID |
| [108] |
D.K. Bediako, Y. Surendranath, D.G. Nocera, J. Am. Chem. Soc. 135 (2013) 3662-3674.
DOI URL |
| [109] |
G. Chen, Y. Zhu, H.M. Chen, Z. Hu, S.F. Hung, N. Ma, J. Dai, H.J. Lin, C.T. Chen, W. Zhou, Z. Shao, Adv. Mater. 31 (2019) 1900883.
DOI URL |
| [110] |
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Chem. Rev. 118 (2018) 6337-6408.
DOI URL |
| [111] |
Y. Li, M. Lu, Y. Wu, H. Xu, J. Gao, J. Yao, Adv. Mater. Interfaces 6 (2019) 1900290.
DOI URL |
| [112] |
J. Liu, D. Zhu, Y. Zheng, A. Vasileff, S.Z. Qiao, ACS Catal. 8 (2018) 6707-6732.
DOI URL |
| [113] |
P.F. Liu, S. Yang, B. Zhang, H.G. Yang, ACS Appl. Mater. Interfaces 8 (2016) 34474-34481.
DOI URL |
| [114] |
R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Adv. Mater. 29 (2017) 1701546.
DOI URL |
| [115] |
S. Niu, W.J. Jiang, Z. Wei, T. Tang, J. Ma, J.S. Hu, L.J. Wan, J. Am. Chem. Soc. 141 (2019) 7005-7013.
DOI URL |
| [116] |
G. Rajeshichanna, T.I. Singh, N.H. Kim, J.H. Lee, ACS Appl. Mater. Interfaces 10 (2018) 42453-42468.
DOI URL |
| [117] |
Q. Zhou, Y.P. Chen, G.Q. Zhao, Y. Lin, Z.W. Yu, X. Xu, X.L. Wang, H.K. Liu, W.P. Sun, S.X. Dou, ACS Catal. 8 (2018) 5382.
DOI URL |
| [118] |
G. Liu, D.Y. He, R. Yao, Y. Zhao, J.P. Li, Nano Res. 11 (2018) 1664-1675.
DOI URL |
| [119] |
N.L. Yang, H.F. Cheng, X.Z. Liu, Q.B. Yun, Y. Chen, B. Li, B. Chen, Z.C. Zhang, X.P. Chen, Q.P. Lu, J.T. Huang, Y. Huang, Y. Zong, Y.H. Yang, L. Gu, H. Zhang, Adv. Mater. 30 (2018) 1803234.
DOI URL |
| [120] |
H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, Appl. Catal. B Environ. 261 (2020) 118240.
DOI URL |
| [121] |
M. Kuang, J. Zhang, D. Liu, H. Tan, K.N. Dinh, L. Yang, H. Ren, W. Huang, W. Fang, J. Yao, X. Hao, J. Xu, C. Liu, L. Song, B. Liu, Q. Yan, Adv. Energy Mater. 10 (2020) 2002215.
DOI URL |
| [122] |
Y. Song, M. Song, P. Liu, W. Liu, L. Yuan, X. Hao, L. Pei, B. Xu, J. Guo, Z. Sun, J. Mater. Chem. A 9 (2021) 14372-14380.
DOI URL |
| [123] |
S. Liu, J. Zhu, M. Sun, Z. Ma, K. Hu, T. Nakajima, X. Liu, P. Schmuki, L. Wang, J. Mater. Chem. A 8 (2020) 2490-2497.
DOI URL |
| [124] |
L. Álvarez, G. Berhault, G. Alonso-Nuñez, Catal. Lett. 125 (2008) 35.
DOI URL |
| [125] |
X. Yang, W. Xu, S. Cao, S. Zhu, Y. Liang, Z. Cui, X. Yang, Z. Li, S. Wu, A. Inoue, L. Chen, Appl. Catal. B Environ. 246 (2019) 156-165.
DOI URL |
| [126] |
T.S. Li, S. Kaercher, P.W. Roesky, Chem. Soc. Rev. 43 (2014) 42-57.
DOI URL |
| [127] |
K. Zhou, W.J. Zhou, L.J. Yang, J. Lu, S. Cheng, W.J. Mai, Z.H. Tang, L.G. Li, S.W. Chen, Adv. Funct. Mater. 25 (2015) 7530-7538.
DOI URL |
| [128] | X.J. Chen, M. Cheng, D. Chen, R.M. Wang, ACS Appl. Mater.Interfaces 8 (2016) 3892-3900. |
| [129] |
H. Pang, S.M. Wang, W.F. Shao, S.S. Zhao, B. Yan, X.R. Li, S.J. Li, J. Chen, W.M. Du, Nanoscale 5 (2013) 5752-5757.
DOI URL |
| [130] |
J.H. Hu, P. Wang, P.P. Liu, G.Q. Cao, Q. Wang, M. Wei, J. Mao, C.H. Liang, G.S. Shao, Electrochim. Acta 220 (2016) 258-266.
DOI URL |
| [131] |
G.A. Li, C.Y. Wang, W.C. Chang, H.Y. Tuan, ACS Nano 10 (2016) 8632-8644.
DOI URL |
| [132] |
R. Zhao, D. Mieritz, D.K. Seo, C.K. Chan, J. Power Sources 343 (2017) 197-206.
DOI URL |
| [133] |
X.H. Lin, Y.M. Zhao, D.L. Yan, W. Han, Q. Kuang, M.M. Wen, Electrochim. Acta 191 (2016) 207-214.
DOI URL |
| [134] |
P. Bui, A. Takagaki, R. Kikuchi, S.T. Oyama, ACS Catal. 6 (2016) 7701-7709.
DOI URL |
| [135] |
A. Mendoza-Garcia, D. Su, S.H. Sun, Nanoscale 8 (2016) 3244-3247.
DOI PMID |
| [136] |
S.T. Oyama, J. Catal. 216 (2003) 343-352.
DOI URL |
| [137] |
S. Carenco, D. Portehault, C. Boissiere, N. Mezailles, C. Sanchez, Chem. Rev. 113 (2013) 7981-8065.
DOI PMID |
| [138] |
Y. Shi, M. Li, Y. Yu, B. Zhang, Energy Environ. Sci. 13 (2020) 4564-4582.
DOI URL |
| [139] |
J.N. Tiwari, S. Sultan, C.W. Myung, T. Yoon, N.N. Li, M.R. Ha, A.M. Harzandi, H.J. Park, D.Y. Kim, S.S. Chandrasekaran, W.G. Lee, V. Vij, H.J. Kang, T.J. Shin, H.S. Shin, G. Lee, Z. Lee, K.S. Kim, Nat. Energy 3 (2018) 773-782.
DOI URL |
| [140] |
H. Huang, A. Cho, S. Kim, H. Jun, A. Lee, J.W. Han, J. Lee, Adv. Funct. Mater. 30 (2020) 2003889.
DOI URL |
| [141] |
R. Murugavel, A. Choudhury, M.G. Walawalkar, R. Pothiraja, C.N.R. Rao, Chem. Rev. 108 (2008) 3549-3655.
DOI PMID |
| [142] |
Y.C. Chang, S.L. Wang, J. Am. Chem. Soc. 134 (2012) 9848-9851.
DOI URL |
| [143] |
S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, J. Am. Chem. Soc. 104 (1982) 1146-1147.
DOI URL |
| [144] |
J.T. Yuan, S. Najmaei, Z.H. Zhang, J. Zhang, S.D. Lei, P.M. Ajayan, B.I. Yakobson, J. Lou, ACS Nano 9 (2015) 555-563.
DOI URL |
| [145] |
Y. Zhan, M.H. Lu, S.L. Yang, C.H. Xu, Z.L. Liu, J.Y. Lee, ChemCatChem 8 (2016) 372-379.
DOI URL |
| [146] |
D. Yang, Z.Y. Lu, X.H. Rui, X. Huang, H. Li, J.X. Zhu, W.Y. Zhang, Y.M. Lam, H.H. Hng, H. Zhang, Q.Y. Yan, Angew. Chem. Int. Ed. 53 (2014) 9352-9355.
DOI PMID |
| [147] |
Z. Zhang, B. Zandkarimi, A.N. Alexandrova, Acc. Chem. Res. 53 (2020) 447-458.
DOI URL |
| [148] |
Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He, C. Tan, H. Zhang, Nat. Rev. Chem. 4 (2020) 243-256.
DOI URL |
| [149] |
S. Grimme, Comput. Mol. Sci. 1 (2011) 211-228.
DOI URL |
| [150] |
M.A. Ha, E.T. Baxter, A.C. Cass, S.L. Anderson, A.N. Alexandrova, J. Am. Chem. Soc. 139 (2017) 11568-11575.
DOI URL |
| [151] |
M.A. Ha, J. Dadras, A. Alexandroya, ACS Catal. 4 (2014) 3570-3580.
DOI URL |
| [152] |
C. Luo, C. Wang, X. Wu, J. Zhang, J. Chu, Small 13 (2017) 1604259.
DOI URL |
| [153] |
M.K. Blees, A.W. Barnard, P.A. Rose, S.P. Roberts, K.L. McGill, P.Y. Huang, A.R. Ruyack, J.W. Kevek, B. Kobrin, D.A. Muller, P.L. McEuen, Nature 524 (2015) 204.
DOI URL |
| [154] |
S. Bordiga, E. Groppo, G. Agostini, J.A. van Bokhoven, C. Lamberti, Chem. Rev. 113 (2013) 1736-1850.
DOI PMID |
| [155] | L. Fei, S. Lei, W.B. Zhang, W. Lu, Z. Lin, C.H. Lam, Y. Chai, Y. Wang, Nat. Com-mun. 7 (2016) 12206. |
| [156] |
J. Feng, K. Liu, R.D. Bulushev, S. Khlybov, D. Dumcenco, A. Kis, A. Radenovic, Nat. Nanotechnol. 10 (2015) 1070.
DOI URL |
| [157] |
D.J. Flannigan, A.H. Zewail, Acc. Chem. Res. 45 (2012) 1828-1839.
DOI URL |
| [158] |
Q. Fu, L. Yang, W. Wang, A. Han, J. Huang, P. Du, Z. Fan, J. Zhang, B. Xiang, Adv. Mater. 27 (2015) 4732-4738.
DOI URL |
| [159] |
J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A.J. Molina-Mendoza, N. Agrait, G. Rubio-Bollinger, F. Guinea, R. Roldan, A. Castellanos-Gomez, Nano Lett. 16 (2016) 2931-2937.
DOI PMID |
| [160] |
H.G. Liao, L.K. Cui, S. Whitelam, H.M. Zheng, Science 336 (2012) 1011-1014.
DOI URL |
| [161] |
N. de Jonge, F.M. Ross, Nat. Nanotechnol. 6 (2011) 695-704.
DOI URL |
| [162] |
C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watan-abe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5 (2010) 722-726.
DOI PMID |
| [163] |
P.Z. Liu, B. Hao, H.X. Zhang, B.S. Xu, J.J. Guo, New Carbon Mater. 36 (2021) 497-511.
DOI URL |
| [164] |
J. Wang, L. Han, B. Huang, Q. Shao, H.L. Xin, X. Huang, Nat. Commun. 10 (2019) 5692.
DOI URL |
| [165] |
C. Wang, H. Han, W. Jiang, X. Ding, Q. Li, Y. Wang, Catalysts 7 (2017) 49.
DOI URL |
| [166] |
K.L. Mulfort, A. Mukherjee, O. Kokhan, P. Du, D.M. Tiede, Chem. Soc. Rev. 42 (2013) 2215-2227.
DOI PMID |
| [167] |
S.J.L. Billinge, Philos. Trans. R. Soc A 377 (2019) 20180413.
DOI URL |
| [168] |
C.L. Farrow, D.K. Bediako, Y. Surendranath, D.G. Nocera, S.J.L. Billinge, J. Am. Chem. Soc. 135 (2013) 6403-6406.
DOI URL |
| [1] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
| [2] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
| [3] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
| [4] | Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst [J]. J. Mater. Sci. Technol., 2022, 109(0): 267-275. |
| [5] | S.B. Wang, C.F. Pan, B. Wei, X. Zheng, Y.X. Lai, J.H. Chen. Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si(-Sc) alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 216-226. |
| [6] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
| [7] | Jiasi Luo, Wanting Sun, Ranxi Duan, Wenqing Yang, K.C. Chan, Fuzeng Ren, Xu-Sheng Yang. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance [J]. J. Mater. Sci. Technol., 2022, 110(0): 43-56. |
| [8] | Chuangwei Liu, Tianyi Wang, Derek Hao, Qinye Li, Song Li, Chenghua Sun. Catalytic reduction of carbon dioxide over two-dimensional boron monolayer [J]. J. Mater. Sci. Technol., 2022, 110(0): 96-102. |
| [9] | Y.T. Zhou, X.H. Shao, S.J. Zheng, X.L. Ma. Structure evolution of the Fe3C/Fe interface mediated by cementite decomposition in cold-deformed pearlitic steel wires [J]. J. Mater. Sci. Technol., 2022, 101(0): 28-36. |
| [10] | Jun Mei, Qian Zhang, Hong Peng, Ting Liao, Ziqi Sun. Phase engineering activation of low-cost iron-containing sulfide minerals for advanced electrocatalysis [J]. J. Mater. Sci. Technol., 2022, 111(0): 181-188. |
| [11] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
| [12] | Honglin Yan, Jianqiu Wang, Zhiming Zhang, Bright O. Okonkwo. Effects of cutting parameter on microstructure and corrosion behavior of 304 stainless steel in simulated primary water [J]. J. Mater. Sci. Technol., 2022, 122(0): 219-230. |
| [13] | Chunyang Gao, Yixiao Jiang, Tingting Yao, Ang Tao, Xuexi Yan, Xiang Li, Chunlin Chen, Xiu-Liang Ma, Hengqiang Ye. Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films [J]. J. Mater. Sci. Technol., 2022, 107(0): 92-99. |
| [14] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
| [15] | J.F. Zhao, H.P. Wang, B. Wei. A new thermodynamically stable Nb2Ni intermetallic compound phase revealed by peritectoid transition within binary Nb-Ni alloy system [J]. J. Mater. Sci. Technol., 2022, 100(0): 246-253. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
