J. Mater. Sci. Technol. ›› 2022, Vol. 129: 251-260.DOI: 10.1016/j.jmst.2022.04.055
• Research Article • Previous Articles
Daixiu Weia,1,*(
), Wu Gongb,1, Liqiang Wangc, Bowen Tanga,d, Takuro Kawasakib, Stefanus Harjob, Hidemi Katoa
Received:2022-02-26
Revised:2022-04-20
Accepted:2022-04-24
Published:2022-12-01
Online:2022-06-16
Contact:
Daixiu Wei
About author:* E-mail addresses: wei1987xiu@imr.tohoku.ac.jp (D. Wei).1 These authors contributed equally to this work.
Daixiu Wei, Wu Gong, Liqiang Wang, Bowen Tang, Takuro Kawasaki, Stefanus Harjo, Hidemi Kato. Strengthening of high-entropy alloys via modulation of cryo-pre-straining-induced defects[J]. J. Mater. Sci. Technol., 2022, 129: 251-260.
Fig. 1. (a) Setup for the ex situ neutron diffraction measurements, (b) EBSD IPF map showing the grain structure of the CoCrFeNi HEA before CR, (c) neutron diffraction profiles of the CoCrFeNi HEA before CR, after CR, and after subsequent HT at 500, 600, and 700 °C for 1 h, respectively. The neutron diffraction profiles were collected by the axial detector, reflecting the microstructure characteristics along the RD of the samples.
Fig. 2. EBSD IPF maps (a-c) and boundary maps (d-f) of the CoCrFeNi HEA after CR to a 10% (a, d), 20% (b, e), and 30% (c, f) reduction in thickness. The length fractions of the subgrain boundaries (2°-5°), low-angle grain boundaries (5°-15°), and high-angle grain boundaries (15°-180°) are inserted in the boundary maps.
Fig. 3. EBSD IPF maps of the CoCrFeNi HEA after CR and subsequent HT at (a-c) 600 °C for 1 h or (d-f) 700 °C for 1 h. The CR strain was 10% (a, d), 20% (b, e), and 30% (c, f), respectively.
Fig. 4. EBSD boundary maps of the samples after CR and HT at 600 °C for 1 h (a-c) or at 700 °C for 1 h (d-f), corresponding to the EBSD IPF maps in Fig. 3. The CR strain was 10% (a, d), 20% (b, e), and 30% (c, f), respectively. The maps show the distribution of the boundaries with misorientation angles of 2°-5° (red), 5°-15° (green), and 15°-180° (blue). The length fractions of the subgrain boundaries (2°-5°), low-angle grain boundaries (5°-15°), and high-angle grain boundaries (15°-180°) are inserted in the boundary maps.
Fig. 5. (a) Stacking fault probability, (b) dislocation density, and (c) inverse pole figure acquired from the line profile analysis of the neutron diffraction patterns of the CoCrFeNi HEA before CR, after 20% CR, and the 20% CR samples after HT at 600 or 700 °C for 1 h, respectively.
Fig. 6. TEM bright-field (BF) images of the CoCrFeNi HEA rolled by a 10% reduction in thickness at (a) 20 and (b) -196 °C. TEM BF images of the HEA after 10% CR and HT at (c) 600 °C for 1 h and (d) 700 °C for 1 h. The white circles in the TEM images demonstrate the regions for acquiring the selected area diffraction patterns.
Fig. 7. (a-e) Room-temperature tensile properties of the CoCrFeNi HEAs: (a) CR samples; (b) samples after CR and HT at 600 °C for 1 h; (c) samples after CR and HT at 700 °C for 1 h; (d) comparison of the yield strengths; (e) comparison of the UTS. (f) Measured enhancement of yield strength (△σ) and the calculated △σd, △σG, △σsf, and △σx for the CR samples, and the samples after CR and HT at 600 °C for 1 h or 700 °C for 1 h.
| [1] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218. |
| [2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
| [3] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
| [4] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
| [5] |
B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602.
DOI PMID |
| [6] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
| [7] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
| [8] |
N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, G.A. Salishchev, J. Alloy. Compd. 687 (2016) 59-71.
DOI URL |
| [9] |
E. Ma, X. Wu, Nat. Commun. 10 (2019) 5623.
DOI URL |
| [10] |
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581 (2020) 283-287.
DOI URL |
| [11] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Nature 563 (2018) 546-550.
DOI URL |
| [12] |
D. Raabe, Z. Li, D. Ponge, MRS Bull. 44 (2019) 266-272.
DOI URL |
| [13] |
D. Wei, X. Li, W. Heng, Y. Koizumi, F. He, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Mater. Res. Lett. 7 (2019) 82-88.
DOI URL |
| [14] |
D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.M. Choi, B.J. Lee, H.S. Kim, H. Kato, A. Chiba, Scr. Mater. 165 (2019) 39-43.
DOI URL |
| [15] |
D. Wei, X. Li, S. Schönecker, J. Jiang, W.M. Choi, B.J. Lee, H.S. Kim, A. Chiba, H. Kato, Acta Mater. 181 (2019) 318-330.
DOI URL |
| [16] | H.L. Yi, D. Wei, R.Y. Xie, Y.F. Zhang, H. Kato, Materials 14 (2021) 1196 (Basel). |
| [17] |
F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, Int. J. Plast. 16 (20 0 0) 723-748.
DOI URL |
| [18] |
B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 (2018) 283-362.
DOI URL |
| [19] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
| [20] |
Y.L. Zhao, T. Yang, J.H. Zhu, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Scr. Mater. 148 (2018) 51-55.
DOI URL |
| [21] |
H. Ma, C.H. Shek, J. Alloy. Compd. 827 (2020) 154159.
DOI URL |
| [22] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116 (2016) 332-342.
DOI URL |
| [23] |
W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Intermetallics 60 (2015) 1-8.
DOI URL |
| [24] |
L. Wang, L. Wang, Y.C. Tang, L. Luo, L.S. Luo, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Alloy. Compd. 843 (2020) 155997.
DOI URL |
| [25] |
H. Yi, D. Wei, R. Xie, Y. Zhang, H. Kato, Mater. Sci. Eng. A 819 (2021) 141390.
DOI URL |
| [26] |
S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108 (2015) 44-47.
DOI URL |
| [27] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152-163.
DOI URL |
| [28] | F.J. Humphreys, M. Hatherly, in: Recrystallizationand Related Annealing Phenomena,1st ed.ed., Elsevier Science, Oxford, 1995, p. 16. |
| [29] |
T. Shanmugasundaram, B.S. Murty, V.S. Sarma, Scr. Mater. 54 (2017) 2013-2017.
DOI URL |
| [30] |
Y. Bum, D. Hyuk, K. Park, W.J. Nam, Scr. Mater. 51 (2004) 355-359.
DOI URL |
| [31] |
S. Harjo, T. Ito, K. Aizawa, H. Arima, J. Abe, A. Moriai, T. Iwahashi, T. Kamiyama, Mater. Sci. Forum 681 (2011) 4 43-4 48.
DOI URL |
| [32] |
R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K. Mori, T. Kamiyama, Nucl. Instrum. Methods Phys. Res. Sect. A 600 (2009) 94-96.
DOI URL |
| [33] |
R. Oishi-Tomiyasu, M. Yonemura, T. Morishima, J. Appl. Crystallogr. 45 (2012) 299-308.
DOI URL |
| [34] | B.E. Warren, X-Ray Diffraction, Dover Publications, New York, 1990. |
| [35] |
J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon, Y.M. Koo, Acta Mater. 60 (2012) 2290-2299.
DOI URL |
| [36] | M. Frank, Y. Chen, S.S. Nene, S. Sinha, K. Liu, K. An, R.S. Mishra, Mater. Today Commun. 23 (2020) 100858. |
| [37] |
G. Ribárik, T. Ungár, J. Gubicza, J. Appl. Crystallogr. 34 (2001) 669-676.
DOI URL |
| [38] |
T. Ungár, L. Balogh, G. Ribárik, Metall. Mater. Trans. A 41 (2010) 1202-1209.
DOI URL |
| [39] |
G. Ribárik, B. Jóni, T. Ungár, Crystals 10 (2020) 623.
DOI URL |
| [40] |
A. Sarkar, P. Mukherjee, P. Barat, Mater. Sci. Eng. A 485 (2008) 176-181.
DOI URL |
| [41] | M. Wilkens, Phys. Status Solidi 2 (1970) 359-370. |
| [42] |
T. Ungár, J. Gubicza, G. Ribárik, A. Borbély, J. Appl. Crystallogr. 34 (2001) 298-310.
DOI URL |
| [43] | G. Ribárik, Modeling of Diffraction Patterns Properties, Eötvös University, Budapest, 2008 Ph.D. Thesis. |
| [44] | J. Gubicza, X-Ray Line Profile Analysis in Materials Science, IGI Global, Hershey PA, USA, 2014. |
| [45] |
A. Borbély, J. Dragomir-Cernatescu, G. Ribárik, T. Ungár, J. Appl. Crystallogr. 36 (2003) 160-162.
DOI URL |
| [46] |
F. Tian, L.K. Varga, N. Chen, L. Delczeg, L. Vitos, Phys. Rev. B 87 (2013) 075144.
DOI URL |
| [47] |
G. Ribárik, B. Jóni, T. Ungár, Crystals 10 (2020) 623.
DOI URL |
| [48] |
H. Tyralis, D. Koutsoyiannis, S. Kozanis, Comput. Stat. 28 (2013) 1501-1527.
DOI URL |
| [49] |
D. Wei, L. Wang, Y. Zhang, W. Gong, T. Tsuru, I. Lobzenko, J. Jiang, S. Harjo, T. Kawasaki, J.W. Bae, W. Lu, Z. Lu, Y. Hayasaka, T. Kiguchi, N.L. Okamoto, T. Ichitsubo, H.S. Kim, T. Furuhara, E. Ma, H. Kato, Acta Mater. 225 (2022) 117571.
DOI URL |
| [50] |
M. Naeem, H. He, S. Harjo, T. Kawasaki, W. Lin, J.J. Kai, Z. Wu, S. Lan, X.L. Wang, Acta Mater. 221 (2021) 117371.
DOI URL |
| [51] |
W. Woo, M. Naeem, J. Jeong, C.M. Lee, S. Harjo, T. Kawasaki, H. He, X.L. Wang, Mater. Sci. Eng. A 781 (2020) 139224.
DOI URL |
| [52] |
Y. Wang, B. Liu, K. Yan, M. Wang, S. Kabra, Y.L. Chiu, D. Dye, P.D. Lee, Y. Liu, B. Cai, Acta Mater. 154 (2018) 79-89.
DOI URL |
| [53] | J. Humphreys, G.S. Rohrer, A. Rollett, in: Recrystallizationand Related Annealing Phenomena, 3rd ed., Elsevier, Amsterdam, 2017, p. 203. |
| [54] |
J. Liu, X. Guo, Q. Lin, Z. He, X. An, L. Li, Sci. China Mater. 62 (2019) 853-863.
DOI URL |
| [55] |
Q. Lin, J. Liu, X. An, H. Wang, Y. Zhang, X. Liao, Mater. Res. Lett. 6 (2018) 236-243.
DOI URL |
| [56] |
W. Li, H. Liu, P. Yin, W. Yan, W. Wang, Y. Shan, K. Yang, J. Mater. Sci. Technol. 100 (2022) 129-136.
DOI URL |
| [57] | E.O. Hall,Proc. Phys. Soc. Sect. B 64 (1951) 742-747. |
| [58] | N.J. Petch, J. Iron Steel Inst. 174 (1953) 25-28. |
| [59] |
B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 (2018) 283-362.
DOI URL |
| [60] |
U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171-273.
DOI URL |
| [61] |
F.F. Lavrentev, Mater. Sci. Eng. 46 (1980) 191-208.
DOI URL |
| [62] |
S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Intermetallics 93 (2018) 269-273.
DOI URL |
| [63] |
Z.Y. Liang, Y.Z. Li, M.X. Huang, Scr. Mater. 112 (2016) 28-31.
DOI URL |
| [64] |
Q. Pan, L. Zhang, R. Feng, Q. Lu, K. An, A.C. Chuang, J.D. Poplawsky, P.K. Liaw, L. Lu, Science 374 (2021) 984-989.
DOI URL |
| [65] |
W.W. Jian, G.M. Cheng, W.Z. Xu, C.C. Koch, Q.D. Wang, Y.T. Zhu, S.N. Mathaudhu, Appl. Phys. Lett. 103 (2013) 133108.
DOI URL |
| [66] |
Y.Z. Tian, L.J. Zhao, S. Chen, A. Shibata, Z.F. Zhang, N. Tsuji, Sci. Rep. 5 (2015) 16707.
DOI PMID |
| [67] |
W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Mater. Res. Lett. 1 (2013) 61-66.
DOI URL |
| [68] |
M. Frank, S.S. Nene, Y. Chen, B. Gwalani, E.J. Kautz, A. Devaraj, K. An, R.S. Mishra, Sci. Rep. 10 (2020) 22263.
DOI PMID |
| [69] |
S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scr. Mater. 134 (2017) 33-36.
DOI URL |
| [70] | A. Luft, Phys. Status Solidi 42 (1970) 429-440. |
| [71] |
S. Ikeda, J. Phys. Soc. Jpn. 27 (1969) 1564.
DOI URL |
| [1] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
| [2] | Nan Yang, Nagasivamuni Balasubramani, Jeffrey Venezuela, Helle Bielefeldt-Ohmann, Rachel Allavena, Sharifah Almathami, Matthew Dargusch. Microstructure refinement in biodegradable Zn-Cu-Ca alloy for enhanced mechanical properties, degradation homogeneity, and strength retention in simulated physiological condition [J]. J. Mater. Sci. Technol., 2022, 125(0): 1-14. |
| [3] | Yiping Lu, Xiaoxiang Wu, Zhenghong Fu, Qiankun Yang, Yong Zhang, Qiming Liu, Tianxin Li, Yanzhong Tian, Hua Tan, Zhiming Li, Tongmin Wang, Tingju Li. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing [J]. J. Mater. Sci. Technol., 2022, 126(0): 15-21. |
| [4] | R.Y. Zhang, H.L. Qin, Z.N. Bi, Y.T. Tang, J. Araújo de Oliveira, T.L. Lee, C. Panwisawas, S.Y. Zhang, J. Zhang, J. Li, H.B. Dong. γ″ variant-sensitive deformation behaviour of Inconel 718 superalloy [J]. J. Mater. Sci. Technol., 2022, 126(0): 169-181. |
| [5] | Dong Wu, Wenya Li, Kun Liu, Yang Yang, Sijie Hao. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment [J]. J. Mater. Sci. Technol., 2022, 106(0): 211-224. |
| [6] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
| [7] | L. Zhao, L. Jiang, L.X. Yang, H. Wang, W.Y. Zhang, G.Y. Ji, X. Zhou, W.A. Curtin, X.B. Chen, P.K. Liaw, S.Y. Chen, H.Z. Wang. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 269-282. |
| [8] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
| [9] | Sibing Wang, Wenchen Xu, Bin Shao, Guoping Yang, Yingying Zong, Wanting Sun, Zhongze Yang, Debin Shan. Process design and microstructure-property evolution during shear spinning of Ti2AlNb-based alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 1-17. |
| [10] | Wei Wu, Wanjing Zhao, Xianjing Gong, Qijun Sun, Xianwu Cao, Yujun Su, Bin Yu, Robert K.Y. Li, Roy A.L. Vellaisamy. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites [J]. J. Mater. Sci. Technol., 2022, 101(0): 107-117. |
| [11] | Y. Lei, J. Sun, X.G. Song, M.X. Yang, T.L. Yang, J. Yin. Eutectic-reaction brazing of Al0.3CoCrFeNi high-entropy alloys using Ni/Nb/Ni interlayers [J]. J. Mater. Sci. Technol., 2022, 121(0): 245-255. |
| [12] | Yang Bowei, Wang Yu, Gao Minqiang, Wang Changfeng, Guan Renguo. Microstructural evolution and strengthening mechanism of Al-Mg alloys with fine grains processed by accumulative continuous extrusion forming [J]. J. Mater. Sci. Technol., 2022, 128(0): 195-204. |
| [13] | Libo Fu, Deli Kong, Chengpeng Yang, Jiao Teng, Yan Lu, Yizhong Guo, Guo Yang, Xin Yan, Pan Liu, Mingwei Chen, Ze Zhang, Lihua Wang, Xiaodong Han. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire [J]. J. Mater. Sci. Technol., 2022, 101(0): 95-106. |
| [14] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
| [15] | L. Tang, F.Q. Jiang, J.S. Wróbel, B. Liu, S. Kabra, R.X. Duan, J.H. Luan, Z.B. Jiao, M.M. Attallah, D. Nguyen-Manh, B. Cai. In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 116(0): 103-120. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
