J. Mater. Sci. Technol. ›› 2022, Vol. 129: 96-107.DOI: 10.1016/j.jmst.2022.04.038
• Research Article • Previous Articles Next Articles
H.R. Zhanga, H.Z. Niua,b,*(), M.C. Zanga, Y.H. Zhanga, S. Liua, D.L. Zhanga,b,*(
)
Received:
2022-03-22
Revised:
2022-04-19
Accepted:
2022-04-23
Published:
2022-05-27
Online:
2022-05-27
Contact:
H.Z. Niu,D.L. Zhang
About author:
zhangdeliang@mail.neu.edu.cn (D.L. Zhang).H.R. Zhang, H.Z. Niu, M.C. Zang, Y.H. Zhang, S. Liu, D.L. Zhang. Tensile properties and deformation behavior of an extra-low interstitial fine-grained powder metallurgy near alpha titanium alloy by recycling coarse pre-alloyed powder[J]. J. Mater. Sci. Technol., 2022, 129: 96-107.
Fig. 1. (a) The hydrogenated pre-alloyed powder, (b) particle size distribution of the powder, (c) warm-pressed powder compacts and (d) fracture surface of an artificially broken powder compact.
Fig. 3. Microstructure of the as-extruded rod: (a) OM, (b) SEM and (c-e) TEM bright-field images. The selected area electron diffraction spots (SADS) of α' and δ-TiH2 were inserted in (c), (f-h) TEM dark-field images, and (i) the corresponding SADS of areas marked by yellow dotted circle.
Fig. 4. Microstructural characteristics of the PA-700 sample: (a) OM image, (b) and (c) SEM images, (d) all Euler map and (e) the historgram of α-Ti misorientation angles.
Fig. 5. Microstructural characteristics of the PA-880 sample: (a) OM image, (b) and (c) SEM images, (d) nano-hardness values at different indentation sites, (e) the representative load-displacement curves of α-laths and βt domains.
Fig. 7. The deformation characteristics near the fractures of (a-c) PA-700 sample, (d-f) PA-880 sample and (g-i) SPS-880 sample. (a), (d) And (g) surface slip traces, the inserted image in (a) showing one secondary crack near the fracture, (b), (e) and (h) microcracks and micropores on the longitudinal sections, (c), (f) and (i) fracture morphologies.
Fig. 8. Schematic illustration of the phase transition and microstructural evolution at the fast sintering & hot extrusion stage and vacuum dehydrogenation stage.
Fig. 9. EBSD results of the PA-700 sample: (a) a superposed image of IPF-X map of grain boundary α and band contrast (BC) map, (b) PFs of {110} β G1 and (0001) α GB1, scattered PF of β G2 is superposed on. (c) IPF-X map, the dotted black lines outline the prior β-Ti grains based on Burgers orientation relationships, (d) the corresponding PFs of {110} of prior β grain G6 and the superposed {110} pole density distributions of G3, G4, G5, G7, (e) a pie chart of frequencies of individual α-variants.
Fig. 10. The identified surface slip plane traces according to analysis of EBSD results of the PA-700 sample strained to 3.0%: (a) IPF-X map, (b) Kernel average misorientation (KAM) map, (c-f) IPF-X maps of individual α-variants superposed on a FSD image. The inserted PFs and unit cells on left bottom of the FSD image highlight the activated slip plane of individual α-variants.
(0001)<11-20> | {10-10}<11-20> | {10-11}<1-210> | {10-11}<11-2-3> | {11-22}<11-2-3> | SF (Basal/pris) | SF (pyra/pris) | |
---|---|---|---|---|---|---|---|
1 | 0.12 | 0.01 | 0.09 | 0.49 | 0.49 | - | - |
2 | 0.13 | 0.45 | 0.41 | 0.47 | 0.39 | 0.29 | 0.91 |
3 | 0.32 | 0.39 | 0.49 | 0.36 | 0.29 | 0.82 | 1.26 |
4 | 0.33 | 0.37 | 0.49 | 0.34 | 0.26 | 0.89 | 1.33 |
Table 1. Corresponding SF values of individual α-variants in the prior β grain G1 of PA-700 sample shown in Fig. 10.
(0001)<11-20> | {10-10}<11-20> | {10-11}<1-210> | {10-11}<11-2-3> | {11-22}<11-2-3> | SF (Basal/pris) | SF (pyra/pris) | |
---|---|---|---|---|---|---|---|
1 | 0.12 | 0.01 | 0.09 | 0.49 | 0.49 | - | - |
2 | 0.13 | 0.45 | 0.41 | 0.47 | 0.39 | 0.29 | 0.91 |
3 | 0.32 | 0.39 | 0.49 | 0.36 | 0.29 | 0.82 | 1.26 |
4 | 0.33 | 0.37 | 0.49 | 0.34 | 0.26 | 0.89 | 1.33 |
Fig. 11. The identified surface slip plane traces of PA-880 sample strained to 6.0%: (a) IPF-X map, (b) KAM map, (c) and (d) IPF-X maps of individual α-variants superposed on the FSD image. The inserted 3D unit cells and PFs on the FSD image demonstrate the activated slip planes of individual α-variants, (e) differently oriented unit cells of adjacent β1 and β2 grains and the corresponding PFs of (0001) αGB.
[1] |
T. DebRoy, T. Mukherjee, J.O. Milewski, J.W. Elmer, B. Ribic, J.J. Blecher, W. Zhang, Nat. Mater. 18 (10) (2019) 1026-1032.
DOI PMID |
[2] |
W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Inter. Mater. Rev. 61 (5)(2016) 315-360.
DOI URL |
[3] | E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille,Proc. CIRP 35 (2015) 55-60. |
[4] |
L.C. Zhang, Y. Liu, S. Li, Y. Hao, Adv. Eng. Mater. 20 (5) (2017) 1700842.
DOI URL |
[5] |
E. Bassini, U. Galech, T. Soria, M. Aristizabal, I. Iturriza, S. Biamino, D. Ugues, J. Alloy. Compd. 890 (2021) 161631.
DOI URL |
[6] |
H.Z. Niu, T.X. Gao, Q.Q. Sun, H.R. Zhang, D.L. Zhang, G.L. Liu, Mater. Sci. Eng. A 737 (2018) 151-157.
DOI URL |
[7] |
N. Araya, G.O. Neves, A.I. Ramos Filho, C. Aguilar, J.D. Biasoli de Mello, C. Binder, A.N. Klein, G. Hammes, Mater. Chem. Phys. 253 (2020) 123442.
DOI URL |
[8] |
Y. Zhou, F. Yang, C. Chen, Y. Shao, B. Lu, T. Lu, Y. Sui, Z. Guo, J. Alloy. Compd. 885 (2021) 161006.
DOI URL |
[9] |
A.P. Singh, B. Gabbitas, I.W.M. Brown, A. Mukhtar, Mater. Sci. Tech. 37 (1)(2020) 23-32.
DOI URL |
[10] |
P. Petrovskiy, M. Khomutov, V. Cheverikin, A. Travyanov, A. Sova, I. Smurov, Surf. Coat. Technol. 405 (2021) 126736.
DOI URL |
[11] |
Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free, Inter. Mater. Rev. 63 (2017) 407-459.
DOI URL |
[12] |
J.D. Paramore, Z.Z. Fang, M. Dunstan, P. Sun, B.G. Butler, Sci. Rep. 7 (2017) 414 4 4.
DOI URL |
[13] | G. Abakumov, V. Duz, O. Ivasishin, V. Moxson, D. Savvakin,High perfor- mance titanium powder metallurgy components produced from hydrogenated titanium powder by low cost blended elemental approach, in:Ti 2011 Proceedings of the 12th World Conference on Titanium. 2 (2012) 1639 -1643. |
[14] | Y. Xia, Z.Z. Fang, D. Fan, P. Sun, Y. Zhang, J. Zhu, Int. J. Hydrogen Energy 43 (27)(2018) 11939-11951. |
[15] |
H.Z. Niu, H.R. Zhang, Q.Q. Sun, D.L. Zhang, Mater. Sci. Eng. A 754 (2019) 361-369.
DOI URL |
[16] | G. Chen, K.D. Liss, G. Auchterlonie, H.P. Tang, P. Cao, Metall. Mater. Trans. A 48 (6) (2017) 2949-2959. |
[17] |
H.R. Zhang, H.Z. Niu, Y.H. Zhang, M.C. Zang, D.L. Zhang, J. Alloy. Compd. 894 (2021) 162517.
DOI URL |
[18] |
J. Li, X. Li, M. Sui, Journal. Mater. Sci. Technol. 81 (2021) 108-116.
DOI URL |
[19] |
Y. Chang, S. Zhang, C.H. Liebscher, D. Dye, D. Ponge, C. Scheu, G. Dehm, D. Raabe, B. Gault, W. Lu, Scr. Mater. 178 (2020) 39-43.
DOI URL |
[20] |
T. Zhu, M. Li, Mater. Charact. 62 (7) (2011) 724-729.
DOI URL |
[21] |
P. Sun, Z.Z. Fang, M. Koopman, Y. Xia, J. Paramore, K.S. Ravi Chandran, Y. Ren, J. Lu, Metall. Mater. Trans. A 46 (12) (2015) 5546-5560.
DOI URL |
[22] | J. Zhao, H. Ding, Y. Zhong, C.S. Lee, Int. J. Hydrogen Energy 35 (12) (2010) 6448-6454. |
[23] |
H. Beladi, Q. Chao, G.S. Rohrer, Acta Mater. 80 (2014) 478-489.
DOI URL |
[24] |
T.-S. Jun, A. Bhowmik, X. Maeder, G. Sernicola, T. Giovannini, I. Dolbnya, J. Michler, F. Giuliani, B. Britton, Mater. Charact. 184 (2022) 111695.
DOI URL |
[25] |
D. Caillard, M. Gaumé, F. Onimus, Acta Mater. 155 (2018) 23-34.
DOI URL |
[26] |
C. Liu, Y. Lu, X. Tian, D. Liu, Mater. Sci. Eng. A 661 (2016) 145-151.
DOI URL |
[27] |
D.-s. Kang, K.-j. Lee, E.-p. Kwon, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A 632 (2015) 120-126.
DOI URL |
[28] |
H.R. Zhang, H.Z. Niu, S. Liu, M.C. Zang, D.L. Zhang, Scr. Mater. 213 (2022) 114633.
DOI URL |
[29] |
K. Wei, R. Hu, D. Yin, L. Xiao, S. Pang, Y. Cao, H. Zhou, Y. Zhao, Y. Zhu, Acta Mater. 206 (2021) 116604.
DOI URL |
[30] |
R. Kirchheim, Scr. Mater. 67 (9) (2012) 767-770.
DOI URL |
[31] |
Y. Xu, B. Zhang, Mater. Sci. Eng. A 815 (2021) 141269.
DOI URL |
[32] |
H.R. Zhang, H.Z. Niu, M.C. Zang, H. Tan, D.L. Zhang, Mater. Sci. Eng. A 825 (2021) 141902.
DOI URL |
[33] |
Z. Du, Q. He, R. Chen, F. Liu, J. Zhang, F. Yang, X. Zhao, X. Cui, J. Cheng, J. Mater. Sci. Technol. 104 (2022) 183-193.
DOI URL |
[34] |
S. Waheed, Z. Zheng, D.S. Balint, F.P.E. Dunne, Acta Mater. 162 (2019) 136-148.
DOI |
[35] |
K. Sofinowski, M. Šmíd, S. van Petegem, S. Rahimi, T. Connolley, H. van Swygenhoven, Acta Mater. 181 (2019) 87-98.
DOI URL |
[36] |
T. Soyez, D. Caillard, F. Onimus, E. Clouet, Acta Mater. 197 (2020) 97-107.
DOI URL |
[37] |
Y. Zhu, X. Wu, Mater. Res. Lett. 7 (10) (2019) 393-398.
DOI URL |
[1] | Jiashun Wang, Linlin Wang, Jiangyong Diao, Xi Xie, Guoming Lin, Qing Jia, Hongyang Liu, Guoxin Sui. Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene [J]. J. Mater. Sci. Technol., 2022, 103(0): 209-214. |
[2] | Lei Lei, Qinyang Zhao, Cong Wu, Yongqing Zhao, Shixing Huang, Weiju Jia, Weidong Zeng. Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 101-113. |
[3] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
[4] | Liliang Shao, Lin Xue, Qiang Luo, Kuibo Yin, Zirui Yuan, Mingyun Zhu, Tao Liang, Qiaoshi Zeng, Litao Sun, Baolong Shen. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 147-156. |
[5] | Xiubing Huang, Xiaoyu Li, Wei Xia, Bin Hu, Martin Muhler, Baoxiang Peng. Highly dispersed Pd clusters/nanoparticles encapsulated in MOFs via in situ auto-reduction method for aqueous phenol hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 167-175. |
[6] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[7] | Gaiping Du, Ran Liu, Qianqian Jia, Gang Han, Zhenguo An, Jingjie Zhang. Novel hollow microsphere with porous carbon shell embedded with Cu/Co bimetal nanoparticles: Facile large-scale preparation and catalytic hydrogenation performance [J]. J. Mater. Sci. Technol., 2022, 122(0): 44-53. |
[8] | Fuyu Dong, Yuexin Chu, Mengyuan He, Yue Zhang, Weidong Li, Peter K. Liaw, Binbin Wang, Liangshun Luod, Yanqing Su, Robert O. Ritchie, Xiaoguang Yuan. Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 102(0): 36-45. |
[9] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[10] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[11] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[12] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[13] | Jin Kim Ye, Min Kim Young, Hong Seong-Gu, Woong Kim Dae, Soo Lee Chong, Hyuk Park Sung. Comparative study of tensile and high-cycle fatigue properties of extruded AZ91 and AZ91-0.3Ca-0.2Y alloys [J]. J. Mater. Sci. Technol., 2021, 93(0): 41-52. |
[14] | Shuting Cao, Yaqian Yang, Bo Chen, Kui Liu, Yingche Ma, Leilei Ding, Junjie Shi. Influence of yttrium on purification and carbide precipitation of superalloy K4169 [J]. J. Mater. Sci. Technol., 2021, 86(0): 260-270. |
[15] | Huabo Li, Yuanyuan Cui, Yixin Liu, Lu Zhang, Quan Zhang, Juhua Zhang, Wei-Lin Dai. Highly efficient Ag-modified copper phyllosilicate nanotube: Preparation by co-ammonia evaporation hydrothermal method and application in the selective hydrogenation of carbonate [J]. J. Mater. Sci. Technol., 2020, 47(0): 29-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||