J. Mater. Sci. Technol. ›› 2021, Vol. 93: 41-52.DOI: 10.1016/j.jmst.2021.03.039
• Original article • Previous Articles Next Articles
Jin Kim Yea, Min Kim Youngb, Hong Seong-Guc, Woong Kim Daed, Soo Lee Chonge, Hyuk Park Sunga,*()
Received:
2020-12-28
Revised:
2021-03-12
Accepted:
2021-03-24
Published:
2021-12-10
Online:
2021-12-10
Contact:
Hyuk Park Sung
About author:
*E-mail address: sh.park@knu.ac.kr (S.H. Park).Jin Kim Ye, Min Kim Young, Hong Seong-Gu, Woong Kim Dae, Soo Lee Chong, Hyuk Park Sung. Comparative study of tensile and high-cycle fatigue properties of extruded AZ91 and AZ91-0.3Ca-0.2Y alloys[J]. J. Mater. Sci. Technol., 2021, 93: 41-52.
Fig. 3. (a) Equilibrium phase diagram of Mg-1Zn-xAl (x = 0-20 wt%), as calculated using PANDAT software. (b-d) SEM micrographs showing (b) discontinuous precipitate (DP) band, (c) lamellar structure of the DP, and (d) Mg17Al12 precipitates along grain boundaries of extruded AZ91 alloy. Text. denotes the extrusion temperature (400 °C).
Fig. 4. Analyses of second-phase particles in extruded SEN9 alloy: (a) backscattered electron image and corresponding EPMA scanning maps of Mg, Al, Zn, Mn, Ca, and Y elements; (b) X-ray diffraction pattern; and (c) size distribution and number density of particles.
Fig. 5. Tensile stress-strain curves and tensile properties of extruded AZ91 and SEN9 alloys. TYS, UTS, and EL denote the tensile yield strength, ultimate tensile strength, and tensile elongation, respectively.
Fig. 6. Texture and Schmid factor (SF) analyses of extruded (a, c, e) AZ91 and (b, d, f) SEN9 alloys: (a, b) extrusion direction (ED) inverse pole figures and SF distributions for (c, d) basal slip and (e, f) prismatic slip under deformation along ED. SFbasal and SFprismatic denote the average SF values for basal slip and prismatic slip, respectively.
Fig. 7. Results of high-cycle fatigue tests (S-N curves) of extruded (a) AZ91 and (b) SEN9 alloys. The fatigue crack initiation sites are specified in parentheses.
Fig. 9. Analysis of fatigue fracture surface of extruded SEN9 alloy: SEM micrographs and EDS scanning maps of Mg, Al, Zn, Ca, and Y elements in fatigue-fractured specimens at stress amplitudes of (a) 210 MPa and (b) 180 MPa. The red rectangular regions in the SEM micrographs indicate the fatigue crack initiation sites where EDS scanning is performed.
Fig. 11. Optical micrographs showing microcracking of extruded SEN9 alloy during tensile deformation: (a) undeformed, (b) 5%-tensioned, (c) 10%-tensioned, and (d) tensile-fractured specimens. The red, blue, and green arrows indicate cracks formed in undissolved particles, deformation twins, and cracks formed along twins, respectively.
Fig. 12. Characteristics of second-phase particles in extruded AZ91 and SEN9 alloys: (a) hardness of matrix and particles; (b, c) SEM micrographs showing deformed particles after hardness measurement (top) and hypothetical structures of particles (bottom) in (b) AZ91 and (c) SEN9 alloys; (d) hypothetical structures of α-Mg matrix (top) and Mg17Al12 phase (bottom) showing the closed-packed plane and direction, as well as their orientation relationship.
[1] | W.M. Fassel, L.B. Gulbransen, J.R. Lewis, J.H. Hamilton, J. Met., 3(1951), pp. 522-528. |
[2] | Y.M. Kim, C.D. Yim, H.S. Kim, B.S. You, Scr. Mater., 65(2011), pp. 958-961. |
[3] | F. Czerwinski, Corros. Sci., 86(2014), pp. 1-16. |
[4] | S. Frank, S. Gneiger, Development of non-flammable magnesium alloys, presented at the ISDM, 2017, Leoben, 2017. |
[5] | T. Zhu, X. Gong, Y. Xiong, X. Hu, Met. Mater.-Int.(2020), 10.1007/s12540-020-00611-1. |
[6] | G. Song, A.L. Bowies, D.H. StJohn, Mater. Sci. Eng. A, 366(2004), pp. 74-86. |
[7] | D. Dubey, K. Kadali, H. Kancharla, A. Zindal, J. Jain, K. Mondal, S.S. Singh, Met. Mater.-Int.(2020), 10.1007/s12540-020-00764-z |
[8] | S. Pawar, T.J.A. Slater, T.L. Burnett, X. Zhou, G.M. Scamans, Z. Fan, G.E. Thompson, P.J. Withers, Acta Mater., 133 (2017), pp. 90-99.] |
[9] | F. Chen, H. Zhou, B. Yao, Z. Qin, Q. Zhang, Surf. Coat. Technol., 201(2007), pp. 4905-4908. |
[10] | A.L. Rudd, C.B. Breslin, F. Mansfeld, Corros. Sci., 42(2000), pp. 275-288. |
[11] | D. Calderon, Y. Galindez, A.A. Zuleta, A. Valencia-Escobar, P. Chacon, E. Correa, F. Echeverria, Met. Mater.-Int.(2021), 10.1007/s12540-020-00912-5 |
[12] | Suzuki, N. Saito, X. Huang, M. Yuasa, Y. Chino, Mater. Trans., 58 (2017), pp. 1616-1623. |
[13] | J. Xie, J. Zhang, Z. You, S. Liu, K. Guan, R. Wu, J. Wang, J. Feng, J. Magnes. Alloy., 9(2021), pp. 41-56. |
[14] | S.M. Baek, J.S. Kang, H.J. Shin, C.D. Yim, B.S. You, H.Y. Ha, S.S. Park, Corros. Sci., 118(2017), pp. 227-232. |
[15] | Y. Go, S.M. Jo, S.H. Park, H.S. Kim, B.S. You, Y.M. Kim, J. Alloy. Compd., 739(2018), pp. 69-76. |
[16] | M. Bauser, G. Sauer, K. Siegert, Extrusion, Second ed., ASM International, Ohio, 2006. |
[17] | J. Go, J.H. Lee, H. Yu, S.H. Park, J. Alloy. Compd., 821(2020), Article 153442. |
[18] | H. Zengin, Y. Turen, Mater. Chem. Phys., 214(2018), pp. 421-430. |
[19] | H. She, D. Shu, A. Dong, J. Wang, B. Sun, H. Lai, J. Mater. Sci. Technol., 35(2019), pp. 2570-2581. |
[20] | Q. Zang, H. Chen, Y.S. Lee, H. Yu, M.S. Kim, H.W. Kim, J. Alloy. Compd., 828(2020), Article 154330. |
[21] | A. Salandari-Rabori, A. Zarei-Hanzaki, H.R. Abedi, J.S. Lecomte, H. Khatami-Hamedani, J. Alloy. Compd., 739(2018), pp. 249-259. |
[22] | S.H. Kim, S.W. Bae, S.W. Lee, B.G. Moon, H.S. Kim, Y.M. Kim, J. Yoon, S.H. Park, Mater. Sci. Eng. A, 725(2018), pp. 309-318. |
[23] | A. Hunsche, P. Neumann, Acta Metall., 34(1986), pp. 207-217. |
[24] | V.D. Le, N. Saintier, F. Morel, D. Bellett, P. Osmond, Int. J. Fatigue, 106(2018), pp. 24-37. |
[25] | J.C. Ting, F.V. Lawrence, Fatigue Fract. Eng. Mater. Struct., 16(1993), pp. 631-647. |
[26] | B. Zhang, D.R. Poirier, W. Chen, Metall. Trans. A, 30(1999), pp. 2659-2665. |
[27] | Y. Chen, C. He, F. Liu, C. Wang, Q. Xie, Q. Wang, Y. Liu, Int. J. Fatigue, 131(2020), Article 105376. |
[28] | Y. Chen, C. He, K. Yang, H. Zhang, C. Wang, Q. Wang, Y. Lu, Int. J. Fatigue, 122(2019), pp. 218-227. |
[29] | R. Verma, R. Jayaganthan, S.K. Nath, A. Srinivasan, Mater. Charact., 160(2020), Article 110048. |
[30] | I. Nonaka, S. Setowaki, Y. Ichikawa, Int. J. Fatigue, 60(2014), pp. 43-47. |
[31] | K. Tanaka, S. Nishijima, S. Matsuoka, F. Kouzu, Fatigue Fract. Eng. Mater. Struct., 4(1981), pp. 97-108. |
[32] | O. Umezawa, T. Ogata, T. Yuri, K. Nagai, K. Ishikawa, Adv. Cryog. Eng., 40(1994), pp. 1231-1238. |
[33] | S.H. Park, C.S. Lee, Mater. Sci. Eng. A, 690(2017), pp. 185-194. |
[34] | A. Bag, D. Delbergue, P. Bocher, M. Levesque, M. Brochu, Int. J. Fatigue, 118(2019), pp. 126-138. |
[35] | M.F. Horstemeyer, N. Yang, K. Gall. D.L. McDowell, J. Fan, P.M. Gullett, Acta Mater., 52(2004), pp. 1327-1336. |
[36] | L. Nascimento, S. Yi, J. Bohlen, L. Fuskova, D. Letzig, K.U. Kainer, Procedia Eng, 2(2010), pp. 743-750. |
[37] | K.N. Braszczynska-Malik, J. Alloy. Compd., 477(2009), pp. 870-876. |
[38] | W.J. Lai, Y.Y. Li, Y.F. Hsu, S. Trong, W.H. Wang, J. Alloy. Compd., 476(2009), pp. 118-124. |
[39] | S.H. Kim, J.U. Lee, Y.J. Kim, J.H. Bae, B.S. You, S.H. Park, J. Mater. Sci. Technol., 34(2018), pp. 265-276. |
[40] | J.Y. Li, J.X. Xie, J.B. Jin, Z.X. Wang, Trans. Nonferrous Met. Soc. China, 22(2012), pp. 1028-1034. |
[41] | S.Z. Qamar, Mater. Manuf. Processes, 25(2010), pp. 1454-1461. |
[42] | D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, Van Nostrand Reinhold Co Ltd., Wokingham, Berkshire, England(1984). |
[43] | P. Villars, Material Phases Data System (MPDS), Springer (2016). |
[44] | H. Yu, Y. Xin, M. Wang, Q. Liu, J. Mater. Sci. Technol., 34(2018), pp. 248-256. |
[45] | Z. Zhang, J. Zhang, J. Wang, Z. Li, J. Xie, S. Liu, K. Guan, R. Wu, Int. J. Miner., Metall. Mater., 28(2021), pp. 30-45. |
[46] | Y. Yu, C. Lawrence, K. Shigeharu, Mater. Trans., JIM, 52(2003), pp. 559-565. |
[47] | K.S. Chan, Int. J. Fatigue, 32(2010), pp. 1428-1447. |
[48] | Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, Oxford, UK (2002). |
[49] | S. Suresh, Fatigue of Materials, (second ed.), Cambridge University Press, Cambridge, UK (1998). |
[50] | J. Go, J.U. Lee, H. Yu, S.H. Park, J. Mater. Sci. Technol., 44(2020), pp. 62-75. |
[51] | J. Bohlen, P. Dobron, J. Swiostek, D. Letzig, F. Chmelik, P. Lukac, K.U. Kainer, Mater. Sci. Eng. A, 462(2007), pp. 302-306. |
[52] | J. Bohlen, P. Dobron, E.M. Garcia, F. Chmelik, P. Lukac, D. Letzig, K.U. Kainer, Adv. Eng. Mater., 8(2006), pp. 422-427. |
[53] | M.R. Barnett, Scr. Mater., 59(2008), pp. 696-698. |
[54] | S. Niknejad, S. Esmaeili, N.Y. Zhou, Acta Mater., 102(2016), pp. 1-16. |
[55] | M.R. Barnett, Mater. Sci. Eng. A, 464(2007), pp. 8-16. |
[56] | Y. You, L. Xuesong, J. Rare Earths, 28(2010), pp. 456-460. |
[57] | J. Chen, R. Cao, Micromechanism of Cleavage Fracture of Metals:a Comprehensive Microphysical Model for Cleavage Cracking in Metals, Elsevier Inc, Butterworth-Heinemann (2015). |
[58] | J.H. Westbrook, R.L. Fleischer, Basic Mechanical Properties and Lattice Defects of Intermetallic Compounds, John Wiley & Sons Ltd., England(2000). |
[59] | W. Xiao, X. Zhang, W.T. Geng, G. Lu, Mater. Sci. Eng. A, 586(2013), pp. 245-252. |
[60] | J. Wang, X. Li, D. Liu, J. Qin, Comput. Mater. Sci., 140(2017), pp. 224-234. |
[61] | X. Min, Y. Sun, F. Xue, W. Du, D. Wu, Mater. Chem. Phys., 78(2002), pp. 88-93. |
[62] | H. Xie, Z. Liu, X. Liu, F. Liu, G. Liu, T. Liu, J. Li, Mater. Sci. Eng. A, 766(2019), Article 138359. |
[63] | T. Hahn, International Tables for Crystallography, (3rd ed.), Kluwer Academic, Dordrecht(1992). |
[64] | M.X. Zhang, P.M. Kelly, Scr. Mater., 48(2003), pp. 647-652. |
[65] | K.N. Braszczyńska-Malik, in: F. Czerwinski (Ed.), Magnesium Alloys-Design, Processing and Properties, INTECH Open Access Publisher, 2011. |
[66] | C.M. Cepeda- Jimenez, M. Castillo- Rodriguez, M.T. Perez-Prado, Acta Mater, 165(2019), pp. 164-176. |
[67] | G.E. Dieter, Mechanical Metallurgy, (3rd ed.), McGraw-Hill, New York (1988). |
[1] | Ruiqing Lu, Shuwei Zheng, Jie Teng, Jiamin Hu, Dingfa Fu, Jianchun Chen, Guodong Zhao, Fulin Jiang, Hui Zhang. Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach [J]. J. Mater. Sci. Technol., 2021, 80(0): 150-162. |
[2] | Shuting Cao, Yaqian Yang, Bo Chen, Kui Liu, Yingche Ma, Leilei Ding, Junjie Shi. Influence of yttrium on purification and carbide precipitation of superalloy K4169 [J]. J. Mater. Sci. Technol., 2021, 86(0): 260-270. |
[3] | Zijian Yu, Xi Xu, Adil Mansoor, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Precipitate characteristics and their effects on the mechanical properties of as-extruded Mg-Gd-Li-Y-Zn alloy [J]. J. Mater. Sci. Technol., 2021, 88(0): 21-35. |
[4] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[5] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[6] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[7] | Hyun Ji Kim, Sang-Cheol Jin, Jae-Gil Jung, Sung Hyuk Park. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71(0): 87-97. |
[8] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[9] | Hong-Lei Chen, Xue-Mei Luo, Dong Wang, Peter Schaaf, Guang-Ping Zhang. Achieving very high cycle fatigue performance of Au thin films for flexible electronic applications [J]. J. Mater. Sci. Technol., 2021, 89(0): 107-113. |
[10] | Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature [J]. J. Mater. Sci. Technol., 2020, 46(0): 225-236. |
[11] | Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2020, 47(0): 142-151. |
[12] | Jianwei Tang, Liang Chen, Guoqun Zhao, Cunsheng Zhang, Xingrong Chu. Formation mechanism and evolution of surface coarse grains on a ZK60 Mg profile extruded by a porthole die [J]. J. Mater. Sci. Technol., 2020, 47(0): 88-102. |
[13] | Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 133-145. |
[14] | Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 24-30. |
[15] | Yu Zhang, Wei Rong, Yujuan Wu, Liming Peng. Achieving ultra-high strength in Mg-Gd-Ag-Zr wrought alloy via bimodal-grained structure and enhanced precipitation [J]. J. Mater. Sci. Technol., 2020, 54(0): 160-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||