J. Mater. Sci. Technol. ›› 2021, Vol. 93: 53-59.DOI: 10.1016/j.jmst.2021.03.050
• Original article • Previous Articles Next Articles
Yang Chen, Yuede Cao, Zhixiang Qi(
), Guang Chen(
)
Received:2021-02-06
Revised:2021-03-02
Accepted:2021-03-02
Published:2021-12-10
Online:2021-12-10
Contact:
Zhixiang Qi,Guang Chen
About author:gchen@njust.edu.cn (G. Chen).Yang Chen, Yuede Cao, Zhixiang Qi, Guang Chen. Increasing high-temperature fatigue resistance of polysynthetic twinned TiAl single crystal by plastic strain delocalization[J]. J. Mater. Sci. Technol., 2021, 93: 53-59.
Fig. 1. Macrograph of high-temperature fatigue specimen prepared with PST TiAl single crystal and the corresponding lamellar microstructure. (a) Macrograph of high-temperature fatigue specimen; (b) Bright-field TEM image showing the original γ/α2 lamellar structure before the tensile test; (c) High-resolution TEM image showing the γ/α2 interface structure.
Fig. 3. Deformation structure of PST TiAl single crystals after high-cycle fatigue deformation at 975 ℃. (a) Bright-field TEM image showing the typical morphology of lamellar structure in PST TiAl single crystals with 0° lamellar orientation after high-cycle fatigue deformation at 975 ℃; (b) Deformation substructure in SF-type domains; (c) Deformation substructure in V-type domains (stacking fault structures were marked by white arrows); (d) High magnification image of the red dashed box in Fig. 3(c).
Fig. 4. Atomic-scale microstructure of a typical stacking fault in the PST TiAl single crystals after high-cycle fatigue deformation at 975 ℃. (a) HRTEM image; (b) Corresponding SAED pattern taken along the > 2$\bar{1}$10< zone axis; (c) Enlarged images in white dotted frame of this fault in Fig. 4a (stacking fault structures were marked by white arrows); (d), (e) and (f), Enlarged images in red, blue and gold dotted frame of this fault in Fig. 4c respectively.
Fig. 5. Atomistic structure of the relaxed γ/α2 interface showing misfit dislocation and interface structure pattern. (a) The relaxed interface structure is colored by potential energy; (b) The interface stacking regions are colored by CNA.
Fig. 6. Amplitude stress and dislocation density variable with cumulative cycles at stress ratio R = 0.1 with MD simulations. (a) Maximum amplitude stress of 4.5 GPa varies with cumulative cycles; (b) Maximum amplitude stress of 4.0 GPa varies with cumulative cycles; (c) Dislocation density of the maximum amplitude stress of 4.5 GPa.
Fig. 7. Deformations for different cumulative cycles N. (a) N = 0; (b) N = 4.5; (c) N = 5.5; (d) N = 6.5. The structures are identified by the CNA, HCP structure is colored by yellow and FCC is colored by blue.
| [1] | Subra Suresh, Fatigue of Materials, (2nd ed)(1998) London. |
| [2] | S.K. Jha, J.M. Larsen, A.H. Rosenberger, Acta Mater, 53(2005), pp. 1293-1304. |
| [3] | T.E.J. Edwards, Mater. Sci. Technol., 34(2018), pp. 1919-1939. |
| [4] | F. Ellyin, Fatigue Damage, Crack Growth and Life Prediction, (1st ed)(1997) London. |
| [5] | J. Schijve, Fatigue of Structures and Materials, (2nd ed), Springer Netherlands (2009). |
| [6] | H.Y. Yasuda, T. Nakano, Y. Umakoshi, Philos. Mag., 71(1995), pp. 127-138. |
| [7] | Y. Murakami, Effects of Small Defects and Nonmetallic Inclusion, Metal Fatigue(1993) |
| [8] | H.N. Wu, D.S. Xu, H. Wang, R. Yang, J. Mater. Sci. Technol., 32(2016), pp. 1033-1042. |
| [9] | J.J. Kruzic, J.P. Campbell, R.O. Ritchie, Acta Mater, 47(1999), pp. 801-816. |
| [10] | Y. Mine, K. Takashima, P. Bowen, Mater. Sci. Eng. A, 532(2012), pp. 13-20. |
| [11] | Y. Umakoshi, H.Y. Yasuda, T. Nakano, Intermetallics, 4(1996), pp. S65-S75. |
| [12] | H.Y. Yasuda, T. Nakano, Y. Umakoshi, Philos. Mag., 73(1996), pp. 1035-1051. |
| [13] | Y. Umakoshi, T. Nakano, Acta Metall. Mater., 41(1993), pp. 1155-1161. |
| [14] | F. Appel, H. Clemens, F.D. Fischer, Prog. Mater. Sci., 81(2016), pp. 55-124. |
| [15] | M.H. Yoo, Metall. Trans. A, 12(1981), pp. 409-418. |
| [16] | Y. Umakoshi. T. Nakano, T. Takenaka, K. Sumimoto, T. Yamane, Acta Mater, 41(1993), pp. 1149-1154. |
| [17] | K. Kishida, J. Yoshikawa, H. Inui, M. Yamaguchi, Acta Mater, 47(1999), pp. 3405-3410. |
| [18] | M. Legros, Y. Minonishi, D. Caillard, Philos. Mag., 76(1997), pp. 1013-1032. |
| [19] | M. Legros, Y. Minonishi, D. Caillard, Philos. Mag., 76(1997), pp. 995-1011. |
| [20] | Y. Umakoshi, T. Nakano, ISIJ Int, 32(1992), pp. 1339-1347. |
| [21] | S. Yokoshima, M. Yamaguchi, Acta Mater, 44(1996), pp. 873-883. |
| [22] | L. Heatherly, E.P. George, C.T. Liu, M. Yamaguchi, Intermetallics, 5(1997), pp. 281-288. |
| [23] | A. Jesus Palomares-Garcia, M. Teresa Perez-Prado, J. Mikel Molina-Aldareguia, Mater. Des., 146(2018), pp. 81-95. |
| [24] | Y.H. Lu, Y.G. Zhang, L.J. Qiao, Y.B. Wang, C.Q. Chen, W.Y. Chu, Mater. Sci. Eng. A, 289(2000), pp. 91-98. |
| [25] | S.A. Court, J.P.A. Löfvander, M.H. Loretto, H.L. Fraser, Philos. Mag., 61(1990), pp. 109-139. |
| [26] | G. Chen, Y.B. Peng, G. Zheng, Z.X. Qi, M.Z. Wang, H.C. Yu, C.L. Dong, C.T. Liu, Nat. Mater., 15(2016), pp. 876-881. |
| [27] | T.D. Wood, D.K. Dewald, D.E. Mikkola, Surf. Eng., 15(1999), pp. 335-339. |
| [28] | Y. Zhou, J.Q. Wang, B. Zhang, W. Ke, E.H. Han, Intermetallics, 24(2012), pp. 7-14. |
| [29] | D.P. Wang, Z.X. Qi, H.T. Zhang, G. Chen, Y. Lu, B.A. Sun, C.T. Liu, Mater. Sci. Eng. A, 732(2018), pp. 14-20. |
| [30] | N. He, Z.X. Qi, Y.X. Cheng, J.P. Zhang, L.L. He, G. Chen, Intermetallics, 128(2021), Article 106995. |
| [31] | G. Chen, F.R. Chen, Z.X. Qi, C.M. Feng, Y.D. Cao, H. Xu, G. Zheng, Journal of Vibration, Measurment & diagnosis, 39(2019), pp. 915-1126. |
| [32] | G. Chen, G. Zheng, Z.X. Qi, J.P. Zhang, P. Li, J.L. Cheng, Z.W. Zhang, Acta Metall. Sin., 54(2018), pp. 669-681. (in Chinese) |
| [33] | S. Plimpton, J. Comput. Phys., 117(1995), pp. 1-19. |
| [34] | M.S. Daw, M.I. Baskes, Phys. Rev. B, 29(1984), pp. 6443-6453. |
| [35] | D.S. Xu, H. Wang, R. Yang, P. Veyssière, Acta Mater, 56(2008), pp. 1065-1074. |
| [36] | Z. Cheng, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Science, 362 (2018), p.559. |
| [37] | W.G. Hoover, Phys. Rev. A, 31(1985), pp. 1695-1697. |
| [38] | W.G. Hoover, Phys. Rev. A, 34(1986), pp. 2499-2500. |
| [39] | A. Stukowski, Model Simul. Mater. Sci. Eng., 18(2010), Article 015012. |
| [40] | D. Faken, H. Jónsson, Comput. Mater. Sci., 2(1994), pp. 279-286. |
| [41] | Y. Umakoshi, H.Y. Yasuda, T. Nakano, Mater. Sci. Eng. A, 192-193(1995), pp. 511-517. |
| [42] | D.L. Zhang, L. Jiang, J.M. Schoenung, S. Mahajan, E.J. Lavernia, Philos. Mag., 95(2015), pp. 3823-3844. |
| [43] | K. Wei, R. Hu, D.D. Yin, L.R. Xiao, S. Pang, Y. Cao, H. Zhou, Y.H. Zhao, Y.T. Zhu, Acta Mater, 206(2021), Article 116604. |
| [44] | S.R. Agnew, L. Capolungo, C.A. Calhoun, Acta Mater, 82(2015), pp. 255-265. |
| [45] | E.M. Bringa, A. Caro, Y.M. Wang, M. Victoria, J.M. McNaney, B.A. Remington, R.F. Smith, B.R. Torralva, H.V. Swygenhoven, Science, 309(2005), pp. 1838-1841. |
| [46] | Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma, Nature, 419(2002), pp. 912-915. |
| [47] | M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci., 51(2006), pp. 427-556. |
| [48] | Q.S. Pan, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Nature, 551(2017), pp. 214-217. |
| [49] | Y.J. Du, J. Shen, Y.L. Xiong, Q.D. Li, H.Z. Fu, Metall. Mater. Trans. A, 50(2019), pp. 4166-4177. |
| [50] | R.R. Chen, Q. Wang, Z.C. Zhou, Y.Q. Su, J.J. Guo, H.S. Ding, H.Z. Fu, J. Alloys Compd., 801(2019), pp. 166-174. |
| [51] | H. Wu, G.H. Fan, Prog. Mater. Sci., 113(2020), Article 100675. |
| [52] | T.E.J. Edwards, F.D. Gioacchino, R.M. Moreno, W.J. Clegg, Scr. Mater., 118(2016), pp. 46-50. |
| [53] | T.E.J. Edwards, F.D. Gioacchino, A.J. Goodfellow, G. Mohanty, J. Wehrs, J. Michler, W.J. Clegg, Acta Mater, 163(2019), pp. 122-139. |
| [54] | T.E.J. Edwards, Mater. Sci. Technol., 34(2018), pp. 1-21. |
| [1] | Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures [J]. J. Mater. Sci. Technol., 2021, 68(0): 227-235. |
| [2] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
| [3] | Lei He, ZhiLei Wang, Hiroyuki Akebono, Atsushi Sugeta. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90(0): 9-19. |
| [4] | Dan Liu, Daoxin Liu, Mario Guagliano, Xingchen Xu, Kaifa Fan, Sara Bagherifard. Contribution of ultrasonic surface rolling process to the fatigue properties of TB8 alloy with body-centered cubic structure [J]. J. Mater. Sci. Technol., 2021, 61(0): 63-74. |
| [5] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
| [6] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
| [7] | Chengqi Sun, Yanqing Li, Kuilong Xu, Baotong Xu. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77(0): 223-236. |
| [8] | Min Yang, Jun Zhang, Weimin Gui, Songsong Hu, Zhuoran Li, Min Guo, Haijun Su, Lin Liu. Coupling phase field with creep damage to study γʹ evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 129-137. |
| [9] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
| [10] | Chaolin Tan, Youxiang Chew, Guijun Bi, Di Wang, Wenyou Ma, Yongqiang Yang, Kesong Zhou. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72(0): 217-222. |
| [11] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
| [12] | Jin Kim Ye, Min Kim Young, Hong Seong-Gu, Woong Kim Dae, Soo Lee Chong, Hyuk Park Sung. Comparative study of tensile and high-cycle fatigue properties of extruded AZ91 and AZ91-0.3Ca-0.2Y alloys [J]. J. Mater. Sci. Technol., 2021, 93(0): 41-52. |
| [13] | Song Lin, Appel Fritz, Stark Andreas, Lorenz Uwe, He Junyang, He Zhanbing, Lin Junpin, Zhang Tiebang, Pyczak Florian. On the reversibility of the α2/ωo phase transformation in a high Nb containing TiAl alloy during high temperature deformation [J]. J. Mater. Sci. Technol., 2021, 93(0): 96-102. |
| [14] | Qiu Zheng, Tsuyoshi Furushima. Evaluation of high-temperature tensile behavior for metal foils by a novel resistance heating assisted tensile testing system using samples with optimized structures [J]. J. Mater. Sci. Technol., 2021, 94(0): 216-229. |
| [15] | Xin Wei, Dongmei Fu, Mindong Chen, Wei Wu, Dequan Wu, Chao Liu. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements [J]. J. Mater. Sci. Technol., 2021, 64(0): 222-232. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
