J. Mater. Sci. Technol. ›› 2021, Vol. 94: 216-229.DOI: 10.1016/j.jmst.2021.03.061
• Research Article • Previous Articles Next Articles
Qiu Zheng*(), Tsuyoshi Furushima*(
)
Received:
2020-11-01
Revised:
2021-03-03
Accepted:
2021-03-05
Published:
2021-05-19
Online:
2021-05-19
Contact:
Qiu Zheng,Tsuyoshi Furushima
About author:
tsuyoful@iis.u-tokyo.ac.jp (T. Furushima).Qiu Zheng, Tsuyoshi Furushima. Evaluation of high-temperature tensile behavior for metal foils by a novel resistance heating assisted tensile testing system using samples with optimized structures[J]. J. Mater. Sci. Technol., 2021, 94: 216-229.
Fig. 1. Schematic illustration of heat transfer of a tensile sample: (a) conventional dog-bone shaped sample, (b) proposed rectangular sample, and (c) rectangular sample contacting with jig.
Fig. 4. Structures of test samples: (a) width of 4 mm with a dog-bone shape (W4-D), (b) width of 4 mm with a rectangular shape (W4-R), (c) width of 2 mm with a dog-bone shape (W2-D), (d) width of 2 mm with a rectangular shape (W2-R), and (e) width of 2 mm with a rectangular shape and effective length of 25 mm between two clamping areas (W2-R-L).
Fig. 5. Confirmation of temperature measurement: (a) history of the maximum temperature of W4-D samples, (b), (c) and (d) temperature distributions of the sample at the forming temperatures of 160, 300, and 450 °C, respectively.
Fig. 6. Comparison of strains calculated by DIC and by the gauge (obtained from extensometer) at different temperatures for W4-D samples: (a) nominal stress-strain curves, and (b) deviation of the nominal strains in plastic deformation region calculated by DIC.
Fig. 7. Strain field (Euler-Almansi) of pure Ti foils with W4-D structure at different nominal strains under different tensile temperatures of: (a) 160 °C, (b) 300 °C, and (c) 450 °C.
Fig. 9. Temperature distribution of samples with different shapes: (a) comparison of W4-D and W4-R samples, and (b) comparison of W2-D and W2-R samples.
Fig. 10. Temperature distribution of samples with different sizes: (a) comparison of W4-D and W2-D samples, and (b) comparison of W4-R, W2-R, and W2-R-L samples.
Fig. 11. Temperature distribution of samples with different materials: (a) comparison of samples with dog-bone shapes (Fig. 4(c), W2-D), and (b) comparison of samples with rectangular shapes (Fig. 4(d), W2-R).
160 °C | 300 °C | 450 °C | |
---|---|---|---|
Width 4 mm (W4) | 14.55 | 20.4 | 26.3 |
Width 2 mm (W2) | 19 | 26 | 32.5 |
Table 1 Current density (J: A/mm2) used in the experiments.
160 °C | 300 °C | 450 °C | |
---|---|---|---|
Width 4 mm (W4) | 14.55 | 20.4 | 26.3 |
Width 2 mm (W2) | 19 | 26 | 32.5 |
Fig. 14. Comparison of theoretically analyzed temperature distribution with experimental results at different forming temperatures for samples of: (a) W4-R, and (b) W2-R.
Fig. 15. Comparison of predicted temperature distributions with experimental results at different forming temperatures for: (a) W4-R-L samples, and (b) W2-R-L samples.
Fig. 18. Full-field Green-Lagrange strain distribution of samples with different structures at UTS: (a) W4-D sample tension at 160 °C, (b) W4-R sample tension at 160 °C, (c) W4-R-L sample tension at 160 °C, (d) W4-D sample tension at 300 °C, (e) W4-R sample tension at 300 °C, (f) W4-R-L sample tension at 300 °C, (g) W4-D sample tension at 450 °C, (h) W4-R sample tension at 450 °C, and (i) W4-R-L sample tension at 450 °C.
Typical method | Proposed method | |||
---|---|---|---|---|
Heating method | Furnace | RH | RH | RH |
Sample structure | Short dog-bone | Short dog-bone | Long dog-bone | Long rectangle |
Schematic illustration | ![]() | ![]() | ![]() | ![]() |
Measurement of nominal strain | Stroke of machine Inaccurate (×) | Extensometer or DIC system Accurate (○) | DIC system Accurate (○) | |
Measurement of full-field strain distribution | Not provided (×) | Artificial speckles Inaccurate (×) | Laser speckles Accurate (○) | |
Clamping of sample | Difficult (×) | Easy (○) | Easy (○) | Easy (○) |
Heating/ cooling rate | Slow (×) | Fast (○) | Fast (○) | Fast (○) |
Temperature distribution | Uniform (○) | Non-uniform (×) | Uniform (○) | Uniform (○) |
Sample preparation | Troublesome (×) | Troublesome (×) | Troublesome (×) | Convenient (○) |
Table 2 Comparison of typical and proposed methods for high-temperature tensile testing.
Typical method | Proposed method | |||
---|---|---|---|---|
Heating method | Furnace | RH | RH | RH |
Sample structure | Short dog-bone | Short dog-bone | Long dog-bone | Long rectangle |
Schematic illustration | ![]() | ![]() | ![]() | ![]() |
Measurement of nominal strain | Stroke of machine Inaccurate (×) | Extensometer or DIC system Accurate (○) | DIC system Accurate (○) | |
Measurement of full-field strain distribution | Not provided (×) | Artificial speckles Inaccurate (×) | Laser speckles Accurate (○) | |
Clamping of sample | Difficult (×) | Easy (○) | Easy (○) | Easy (○) |
Heating/ cooling rate | Slow (×) | Fast (○) | Fast (○) | Fast (○) |
Temperature distribution | Uniform (○) | Non-uniform (×) | Uniform (○) | Uniform (○) |
Sample preparation | Troublesome (×) | Troublesome (×) | Troublesome (×) | Convenient (○) |
[1] |
K. Mori, S. Maki, Y. Tanaka, CIRP Ann. -Manuf.Technol. 54 (2005) 209-212, doi: 10.1016/S0007-8506(07)60085-7.
DOI |
[2] |
K. Mori, T. Maeno, H. Yamada, H. Matsumoto, Int. J. Mach. Tools Manuf. 89 (2014) 124-131, doi: 10.1016/j.ijmachtools.2014.10.008.
DOI URL |
[3] |
K. Mori, Y. Okuda, CIRP Ann. -Manuf.Technol. 59 (2010) 291-294, doi: 10.1016/j.cirp.2010.03.107.
DOI |
[4] |
T. Maeno, K. ichiro Mori, R. Yachi, CIRP Ann. -Manuf. Technol. 66 (2017) 269-272, doi: 10.1016/j.cirp.2017.04.117.
DOI URL |
[5] | H. Tanabe, M. Yang, Steel Res. Int. (2011) 979-984. |
[6] |
B. Valoppi, Z. Zhang, M. Deng, A. Ghiotti, S. Bruschi, K.F. Ehmann, J. Cao, Pro-cedia Manuf. 10 (2017) 407-416, doi: 10.1016/j.promfg.2017.07.014.
DOI |
[7] |
D.K. Xu, B. Lu, T.T. Cao, H. Zhang, J. Chen, H. Long, J. Cao, Mater. Des. 92 (2016) 268-280, doi: 10.1016/j.matdes.2015.12.009.
DOI URL |
[8] |
M.J. Kim, K. Lee, K.H. Oh, I.S. Choi, H.H. Yu, S.T. Hong, H.N. Han, Scr. Mater. 75 (2014) 58-61, doi: 10.1016/j.scriptamat.2013.11.019.
DOI URL |
[9] |
K. Liu, X. Huai Dong, W. Shi, Trans. Nonferrous Met. Soc. China (English Ed.) 29 (2019) 735-740, doi: 10.1016/S1003-6326(19)64983-6.
DOI |
[10] |
T. Furushima, K. Manabe, J. Mater. Process. Technol. (2007) 236-240 187-188, doi: 10.1016/j.jmatprotec.2006.11.204.
DOI |
[11] |
T. Furushima, K. ichi Manabe, CIRP Ann. 67 (2018) 309-312, doi: 10.1016/j.cirp.2018.04.101.
DOI URL |
[12] |
J. Magargee, F. Morestin, J. Cao, J. Eng. Mater. Technol. Trans. ASME. 135 (2013) 1-10, doi: 10.1115/1.4024394.
DOI |
[13] |
Y.C. Zhao, M. Wan, B. Meng, J. Xu, D.B. Shan, Mater. Sci. Eng. A. 767(2019), doi: 10.1016/j.msea.2019.138412.
DOI |
[14] |
H.B. Motra, J. Hildebrand, A. Dimmig-Osburg, Eng. Sci. Technol. Int. J. 17 (2014) 260-269, doi: 10.1016/j.jestch.2014.07.006.
DOI |
[15] |
W.L. Chan, M.W. Fu, Mater. Sci. Eng. A. 528 (2011) 7674-7683, doi: 10.1016/j.msea.2011.06.076.
DOI URL |
[16] |
Q. Zheng, T. Shimizu, T. Shiratori, M. Yang, Mater. Des. 63 (2014), doi: 10.1016/j.matdes.2014.06.039.
DOI |
[17] |
T. Lee, J. Magargee, M.K. Ng, J. Cao, Int. J. Plast. 94 (2017) 44-56, doi: 10.1016/j.ijplas.2017.02.012.
DOI URL |
[18] |
J. Li, G. Yang, T. Siebert, M.F. Shi, L. Yang, Opt. Lasers Eng. 107 (2018) 194-201, doi: 10.1016/j.optlaseng.2018.03.029.
DOI URL |
[19] |
X. Zhu, M. Yue, Z. Qu, Y. Ma, H. Li, K. Takagi, X. Fang, X. Feng, Meas. J. Int. Meas. Confed. 133 (2019) 133-138, doi: 10.1016/j.measurement.2018.09.079.
DOI |
[20] |
K. Liu, X. Dong, H. Xie, F. Peng, Mater. Sci. Eng. A. 623 (2015) 97-103, doi: 10.1016/j.msea.2014.11.039.
DOI URL |
[21] |
M. Anwander, B.G. Zagar, B. Weiss, H. Weiss, Exp. Mech. 40 (20 0 0) 98-105, doi: 10.1007/BF02327556.
DOI URL |
[22] |
B.G. Zagar, in: Proceedings of the 20th IMEKO TC2 Symposium on Photonics in Measurement, 9, 2010, pp. 107-111, doi: 10.3788/col201109.071203. 2010.
DOI |
[23] |
M. Shimizu, H. Sawano, H. Yoshioka, H. Shinno, J. Adv. Mech. Des. Syst. Manuf. 9 (2015) JAMDSM0011-JAMDSM0011, doi: 10.1299/jamdsm.2015jamdsm0011.
DOI |
[24] |
Q. Zheng, N. Mashiwa, T. Furushima, Mater. Des. 191 (2020) 108626, doi: 10.1016/j.matdes.2020.108626.
DOI |
[25] |
Q. Zheng, T. Shimizu, M. Yang, Steel Res. Int. 86 (2015), doi: 10.1002/srin.201400574.
DOI |
[26] |
L.C. Tsao, H.Y. Wu, J.C. Leong, C.J. Fang, Mater. Des. 34 (2012) 179-184, doi: 10. 1016/j.matdes.2011.07.060.
DOI URL |
[27] |
J. Xiao, D.S. Li, X.Q. Li, T.S. Deng, J. Alloys Compd. 541 (2012) 346-352, doi: 10. 1016/j.jallcom.2012.07.048.
DOI URL |
[28] |
Z.Y. Zhang, H. Yang, H. Li, N. Ren, D. Wang, Mater. Sci. Eng. A. 569 (2013) 96-105, doi: 10.1016/j.msea.2013.01.055.
DOI URL |
[29] | T.A. Mcneal, J.A. Beers, J.T. Roth, in: Proceedings of the ASME International Manufacturing Science and Engineering Conference, 2009, pp. 1-10. |
[30] |
H.Y. Xie, Q. Wang, F. Peng, K. Liu, X.H. Dong, J.F. Wang, Trans. Nonferrous Met. Soc. China (English Ed.) 25 (2015) 2686-2692, doi: 10.1016/S1003-6326(15)63892-4.
DOI |
[31] |
X. Wang, J. Xu, D. Shan, B. Guo, J. Cao, Int. J. Plast. 85 (2016) 230-257, doi: 10.1016/j.ijplas.2016.07.008.
DOI URL |
[32] |
X. Wang, J. Xu, Z. Jiang, W.Le Zhu, D. Shan, B. Guo, J. Cao, Mater. Sci. Eng. A. 659 (2016) 215-224, doi: 10.1016/j.msea.2016.02.064.
DOI URL |
[33] |
X. Zhang, H. Li, M. Zhan, J. Alloys Compd. 742 (2018) 4 80-4 89, doi: 10.1016/j. jallcom.2018.01.325.
DOI URL |
[34] |
A. Ghiotti, S. Bruschi, E. Simonetto, C. Gennari, I. Calliari, P. Bariani, CIRP Ann 67 (2018) 289-292, doi: 10.1016/j.cirp.2018.04.054.
DOI URL |
[35] |
J. Song, J. Yang, F. Liu, K. Lu, Opt. Lasers Eng. 124 (2020) 105822, doi: 10.1016/j.optlaseng.2019.105822.
DOI |
[36] |
N. Mashiwa, T. Furushima, K. Manabe, Procedia Eng 184 (2017) 16-21, doi: 10.1016/j.proeng.2017.04.065.
DOI URL |
[37] |
J. Blaber, B. Adair, A. Antoniou, Exp. Mech. 55 (2015) 1105-1122, doi: 10.1007/s11340-015-0009-1.
DOI URL |
[38] |
S. Lee, H.J. Ham, S.Y. Kwon, S.W. Kim, C.M. Suh, Int. J. Thermophys. 34 (2013) 2343-2350, doi: 10.1007/s10765-011-1145-1.
DOI URL |
[39] |
Q. Zheng, T. Shimizu, M. Yang, Mech. Eng. J. 2 (2015) 14-00413-14-00413, doi: 10.1299/mej.14-00413.
DOI |
[40] |
Q. Tang, W. Zhang, Int. J. Heat Mass Transf. 103 (2016) 1208-1213, doi: 10.1016/j.ijheatmasstransfer.2016.08.028.
DOI URL |
[41] |
Z. Peng, Y. Chen, X. Feng, Int. J. Heat Mass Trans. 130 (2019) 1170-1177, doi: 10.1016/j.ijheatmasstransfer.2018.11.027.
DOI URL |
[42] |
X. Wang, J. Xu, D. Shan, B. Guo, J. Cao, Mater. Des. 127 (2017) 134-143, doi: 10.1016/j.matdes.2017.04.064.
DOI URL |
[1] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[2] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[3] | Chen Yang, Cao Yuede, Qi Zhixiang, Chen Guang. Increasing high-temperature fatigue resistance of polysynthetic twinned TiAl single crystal by plastic strain delocalization [J]. J. Mater. Sci. Technol., 2021, 93(0): 53-59. |
[4] | Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70(0): 136-144. |
[5] | Zhongdi Yu, Minghui Chen, Jinlong Wang, Fengjie Li, Shenglong Zhu, Fuhui Wang. Enamel coating for protection of the 316 stainless steel against tribo-corrosion in molten zinc alloy at 460 °C [J]. J. Mater. Sci. Technol., 2021, 65(0): 126-136. |
[6] | Ping Deng, Qunjia Peng, En-Hou Han, Wei Ke, Chen Sun. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water [J]. J. Mater. Sci. Technol., 2021, 65(0): 61-71. |
[7] | Wei Song, Xinguang Wang, Jinguo Li, Jie Meng, Yanhong Yang, Jinlai Liu, Jide Liu, Yizhou Zhou, Xiaofeng Sun. Influence of Ta/Al ratio on the microstructure and creep property of a Ru-containing Ni-based single-crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 89(0): 16-23. |
[8] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[9] | Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures [J]. J. Mater. Sci. Technol., 2021, 68(0): 227-235. |
[10] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
[11] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[12] | Hao Ding, Xiping Cui, Naonao Gao, Yuan Sun, Yuanyuan Zhang, Lujun Huang, Lin Geng. Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 221-23. |
[13] | Xu Yaqun, Fu Yu, Li Juan, Xiao Wenlong, Zhao Xinqing, Ma Chaoli. Effects of tungsten addition on the microstructural stability and properties of Ti-6.5Al-2Sn-4Hf-2Nb-based high temperature titanium alloys [J]. J. Mater. Sci. Technol., 2021, 93(0): 147-156. |
[14] | Chengxu Wang, Wei Chen, Minghui Chen, Demin Chen, Ke Yang, Fuhui Wang. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 ℃ [J]. J. Mater. Sci. Technol., 2020, 45(0): 125-132. |
[15] | Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 41(0): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||