J. Mater. Sci. Technol. ›› 2022, Vol. 122: 44-53.DOI: 10.1016/j.jmst.2021.11.080
• Research Article • Previous Articles Next Articles
Gaiping Dua,b, Ran Liua,b, Qianqian Jiaa,b, Gang Hana,b, Zhenguo Ana,*(), Jingjie Zhanga,*(
)
Received:
2021-06-03
Revised:
2021-10-13
Accepted:
2021-11-02
Published:
2022-09-20
Online:
2022-09-05
Contact:
Zhenguo An,Jingjie Zhang
About author:
jjzhang@mail.ipc.ac.cn (J. Zhang).Gaiping Du, Ran Liu, Qianqian Jia, Gang Han, Zhenguo An, Jingjie Zhang. Novel hollow microsphere with porous carbon shell embedded with Cu/Co bimetal nanoparticles: Facile large-scale preparation and catalytic hydrogenation performance[J]. J. Mater. Sci. Technol., 2022, 122: 44-53.
Fig. 1. Schematic illustration of the synthesis of HCS-Cu/Co-T first forming a hollow spherical structure by spraying drying, following by thermal annealing in inert atmospheres.
Fig. 9. EDX mapping images of HCS-Cu/Co-T, T = (a) 300 °C, (b) 400 °C, (c) 500 °C, (d) 600 °C, (e) 700 °C, (f) 800 °C (the red represents Cu phase, the green represents Co phase).
Fig. 11. (a) ID/IG data from Raman spectrum, (b) the electrical conductivity of the HCS-Cu/Co-T (T = 400-800 °C). (b) presents the electrical conductivity of HCS-Cu/Co-T at various HT. With the HT of 300, 400, 500 °C, the electrical conductivity is 4.77 × 10-8, 1.12 × 10-7, 8.90 × 10-7 S/mm, respectively. As the temperature increases to 600 and 700 °C, the electrical conductivity increases quickly to 3.54 × 10-4 and 1.79 × 10-2 S/mm. Subsequently, the conductivity rises rapidly to 0.186 S/mm with the further increase of HT into 800 °C. The electrical conductivity enhances 7 orders of magnitude over HT from 300 °C to 800 °C, indicating the sensitivity of conductive property towards microstructure constructed by heating treatment.
Fig. 12. Experimental plots of (a) At/A0 vs time t, (b) -ln(At/A0) vs time t of 4-NP reduction by NaBH4 over obtained HCS-Cu/Co-T (T = 400-800 °C) catalysts.
Fig. 13. Experimental plots of (a) At/A0 vs time t, (b) -ln(At/A0) vs time t of 4-NP reduction by NaBH4 over catalysts including obtained HCS-Cu/Co-600, Cu+Co+C-600, Cu+C-600, Co+C-600, commercial nano Cu and Co powders. (The legends of the two pictures (a) and (b) are the same.)
Fig. 14. The ka and kn of 4-NP reduction by NaBH4 over catalysts: (a) HCS-Cu/Co-T (T = 400-800 °C), (b) HCS-Cu/Co-600, Cu+Co+C-600, Cu+C-600, Co+C-600, commercial nano Cu and Co powders.
Fig. 15. (a) Reusability test of the HCS-Cu/Co-600 catalyst for the catalytic reduction of 4-NP, (b) the conversion of 4-NP within 60 s by HCS-Cu/Co-600 catalyst in cycle experiment, (c) kn and nNaBH4/n4-NP of reported relative catalysts and catalyst obtained in this work for catalyzing the 4-NP conversion reaction. Refs. [53,54,29,55,44,56].
[1] |
B.X. Zhao, G. Mele, I. Pio, J. Li, L. Palmisano, G. Vasapollo, J. Hazard. Mater. 176 (2010) 569-574.
DOI URL |
[2] |
X.K. Huang, D.F. Wu, D.J. Cheng, J. Colloid Interface Sci. 507 (2017) 429-436.
DOI URL |
[3] | Z.K. Xiong, H. Zhang, W.C. Zhang, B. Lai, G. Yao, Chem. Eng. J. 359 (2019) 13. |
[4] |
P.X. Zhao, X.W. Feng, D.S. Huang, G.Y. Yang, D. Astruc, Coord. Chem. Rev. 287 (2015) 114-136.
DOI URL |
[5] |
N. Yan, L.W. Liao, J.Y. Yuan, Y.J. Lin, L.H. Weng, J.L. Yang, Z.K. Wu, Chem. Mater. 28 (2016) 8240-8247.
DOI URL |
[6] | P.Y. Zhang, T. Song, T.T. Wang, H.P. Zeng, J. Mater. Chem. A 5 (2017) 22772-22781. |
[7] |
P.Y. Zhang, G.C. Zeng, T. Song, S.B. Huang, T.T. Wang, H.P. Zeng, Appl. Catal. B 242 (2019) 389-396.
DOI URL |
[8] |
P.Y. Zhang, G.C. Zeng, T. Song, S.B. Huang, T.T Wang, H.P. Zeng, J. Catal. 369 (2019) 267-275.
DOI URL |
[9] | N.S. Gultom, H. Abdullah, D.H. Kuo, Appl. Catal. B 272 (2020) 118985. |
[10] | C.C. Dong, Y. Bao, T. Sheng, Q.Y. Yi, Q.H. Zhu, B. Shen, M.Y. Xing, I.M.C. Lo, J. L. Zhang, Appl. Catal. B 286 (2021) 119930. |
[11] | G. Sharma, A. Kumar, S. Sharma, M. Naushad, R.P. Dwivedi, Z.A. Alothman, G.T. Mola, J. King Saud Univ. Sci. 31 (2019) 257-269. |
[12] | B. Sunkara, J.J. Zhan, I. Kolesnichenko, Y.Q. Wang, J.B. He, J.E. Holland, G. L. McPherson, V.T. John, Langmuir 27 (2011) 7854-7859. |
[13] |
H.Y. Chen, X.B. Fan, J.W. Ma, G.L. Zhang, F.B. Zhang, Y. Li, Ind. Eng. Chem. Res. 53 (2014) 17976-17980.
DOI URL |
[14] | J.B. Zhao, R.C. Jin, Nano Today 18 (2018) 86-102. |
[15] |
S.H. Chen, W.H. Chu, H.B. Wei, H.Y. Zhao, B. Xu, N.Y. Gao, D.Q. Yin, Sep. Purif. Technol. 203 (2018) 226-232.
DOI URL |
[16] |
Y.L. Liu, X.B. Gong, W.J. Yang, B.Q. Wang, Z. Yang, Y. Liu, Ind. Eng. Chem. Res. 58 (2019) 5175-5185.
DOI URL |
[17] |
C. Cai, H. Zhang, X. Zhong, L.W. Hou, J. Hazard. Mater. 283 (2015) 70-79.
DOI URL |
[18] |
M. Motlak, N.A.M. Barakat, M.S. Akhtar, A.M. Hamza, B.S. Kim, C.S. Kim, K.A. Khalil, A.A. Almajid, Electrochim. Acta 160 (2015) 1-6.
DOI URL |
[19] |
Y.P. Chen, J.T. Wei, M.S. Duyar, V.V. Ordomsky, A.Y. Khodakov, J. Liu, Chem. Soc. Rev. 50 (2021) 2337-2366.
DOI URL |
[20] |
C.L. Wang, D. Astruc, Chem. Soc. Rev. 50 (2021) 3437-3484.
DOI URL |
[21] |
M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X.X. Huang, R. Silva, X.X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116 (2016) 3722-3811.
DOI URL PMID |
[22] | C.Y. Lu, H.H. Tseng, M.Y. Wey, L.Y. Liu, J.H. Kuo, K.H. Chuang, Fuel 88 (2009) 340-347. |
[23] | Y.B.Li K.Chen, M.H. Wang, Y.H. Wang, K. Cheng, Q.H. Zhang, J.C. Kang, Y. Wang, Small 17 (2021) 2007527. |
[24] | S.A. Abbas, M. Forghani, S. Anh, S.W. Donne, K.D. Jung, Energy Storage Mater. 24 (2020) 550-556. |
[25] |
Y.L. Wang, S.Y. Dong, X.Q. Wu, X.W. Liu, M.G. Li, J. Mater. Sci. 52 (2017) 9673-9682.
DOI URL |
[26] | L. Wang, X.F. Yu, M.Q. Huang, W.B. You, Q.W. Zeng, J. Zhang, X.H. Liu, M. Wang, R. C. Che, Carbon 172 ( 2021) 516-528. |
[27] | 27. T. A. Saleh, K.O. Sulaiman, S.A. Al-Hammadi, Appl. Catal. B 263 (2020) 117661. |
[28] |
B. Daelemans, N. Bilbao, W. Dehaen, S. De Feyter, Chem. Soc. Rev. 50 (2021) 2280-2296.
DOI URL PMID |
[29] |
G.P. Du, B. Liao, R. Liu, Z.G. An, J.J. Zhang, RSC Adv. 10 (2020) 35287-35294.
DOI URL |
[30] |
D.P. Debecker, S.L. Bras, C. Boissiere, A. Chaumonnot, C. Sanchez, Chem. Soc. Rev. 47 (2018) 4112-4155.
DOI URL PMID |
[31] |
T. Ji, L. Chen, L.W. Mu, R.X. Yuan, M. Knoblauch, F.S. Bao, Y.J. Shi, H.Y. Wang, J.H. Zhu, Chem. Eng. J. 295 (2016) 301-308.
DOI URL |
[32] |
B. Donoeva, N. Masoud, P.E. de Jongh, ACS Catal. 7 (2017) 4581-4591.
DOI URL PMID |
[33] | H. Tian, J. Liang, J. Liu, Adv. Mater. 31 (2019) 1903886. |
[34] |
L.F. Feitosa, G. Berhault, D. Laurenti, V.T. da Silva, Ind. Eng. Chem. Res. 58 (2019) 16164-16181.
DOI URL |
[35] | R. Nafria, A. Genc, M. Ibanez, J. Arbiol, P. Ramirez de la Piscina, N. Homs, A. Cabot, Langmuir 32 (2016) 2267-2276. |
[36] |
M.F. Sanad, A.R. Puente Santiago, S.A. Tolba, M.A. Ahsan, O. Fernandez-Delgado, M. Shawky Adly, E.M. Hashem, M. Mahrous Abodouh, M.S. El-Shall, S.T. Sreeni-vasan, N.K. Allam, L. Echegoyen, J. Am. Chem. Soc. 143 (2021) 4064-4073.
DOI URL |
[37] | J.S. McDonald-Wharry, M. Manley-Harris, K.L. Pickering, Energy Fuels 30 (2016) 7811-7826. |
[38] |
S. Yuvaraj, F.Y. Lin, T.H. Chang, C.T. Yeh, J. Phys. Chem. B 107 (2003) 1044-1047.
DOI URL |
[39] |
L. Xu, H.W. Liang, Y. Yang, S.H. Yu, Chem. Rev. 118 (2018) 3209-3250.
DOI URL PMID |
[40] |
H.F. Qin, S.F. Kang, Y.G. Wang, H. Liu, Z.J. Ni, Y.K. Huang, Y.G. Li, X. Li, ACS Sustain. Chem. Eng. 4 (2016) 1240-1247.
DOI URL |
[41] |
Z.C. Wu, K. Tian, T. Huang, W. Hu, F.F. Xie, J.J. Wang, M.X. Su, L. Li, ACS Appl. Mater. Interfaces 10 (2018) 11108-11115.
DOI URL |
[42] |
A. Roy, B. Debnath, R. Sahoo, T. Aditya, T. Pal, J. Colloid Interface Sci. 493 (2017) 288-294.
DOI URL |
[43] |
D. Formenti, F. Ferretti, F.K. Scharnagl, M. Beller, Chem. Rev. 119 (2019) 2611-2680.
DOI URL PMID |
[44] | W.C. Zhu, P.P. Sun, L.H. Wang, L.Y. Zhang, X.H. Jia, J.X. Chen, J.Y. Wang, H. Zhang, Z.Y. Liu, S. Zhao, Chem. Eng. J. 411 (2021)128442. |
[45] |
A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (20 0 0) 14095-14107.
DOI URL |
[46] |
Y.C. Huang, H.M. Xu, H.J. Yang, Y. Lin, H. Liu, Y.X. Tong, ACS Sustain. Chem. Eng. 6 (2018) 2751-2757.
DOI URL |
[47] | H.J. Chen, Y.L. Yang, M. Hong, J.G. Chen, G.Q. Suo, X.J. Hou, L. Feng, Z.G. Chen, Sustain. Mater. Technol. 21 (2019) e00105. |
[48] |
H.J. Chen, Y.L. Yang, X.X. Zou, X.L. Shi, Z.G. Chen, J. Mater. Sci. Technol. 98 (2022) 143-150.
DOI URL |
[49] | K.H. Ye, Y. Li, H. Yang, M.G. Li, Y.C. Huang, S.Q. Zhang, H.B. Ji, Appl. Catal. B 259 (2019) 118085. |
[50] | K.S. Li, X.Y. Lu, Y. Zhang, K.L. Liu, Y.C. Huang, H. Liu, Environ. Res. 185 (2020) 109409. |
[51] | Y.L. Yang, H.J. Chen, X.X. Zou, X.L. Shi, W.D. Liu, L. Feng, G.Q. Suo, X.J. Hou, X. H. Ye, L. Zhang, C.H. Sun, H.S. Li, C.Q. Wang, Z.G. Chen, ACS Appl. Mater. Interfaces 12 (2020) 24845-24854. |
[52] |
Y. Li, Y. Xia, K.L. Liu, K.H. Ye, Q.S. Wang, S.Q. Zhang, Y.C. Huang, H. Liu, ACS Appl. Mater. Interfaces 12 (2020) 25494-25502.
DOI URL |
[53] |
M.A. Malik, A.A. Alshehri, R. Patel, J. Mater. Res. Technol. 12 (2021) 455-470.
DOI URL |
[54] |
L.J. Sun, Y. Deng, Y.Y. Yang, Z.Q. Xu, K.N. Xie, L. Liao, RSC Adv. 7 (2017) 17781-17787.
DOI URL |
[55] | T.T. Cao, C.H. Wang, A.J. Zhou, L. Liu, S.M. Xu, H.T. Song, W. Lin, Z.G. Xu, Appl. Surf. Sci. 552 (2021) 149487. |
[56] |
W.L. Jia, F.P. Tian, M.J. Zhang, X.Y. Li, S. Ye, Y.F. Ma, W.Y. Wang, Y.F. Zhang, C. G. Meng, G. Zeng, J. Liu, J. Colloid Interface Sci. 594 (2021) 254-264.
DOI URL |
[1] | Zhongliao Wang, Yifan Chen, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 143-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||