J. Mater. Sci. Technol. ›› 2022, Vol. 129: 70-78.DOI: 10.1016/j.jmst.2022.03.034
• Research Article • Previous Articles Next Articles
Xiaoran Yina,b, Haitao Wanga,c,*(), En-Hou Hana,c,*(
)
Received:
2021-11-09
Revised:
2022-03-08
Accepted:
2022-03-30
Published:
2022-05-25
Online:
2022-05-25
Contact:
Haitao Wang,En-Hou Han
About author:
ehhan@imr.ac.cn (E.-H. Han).Xiaoran Yin, Haitao Wang, En-Hou Han. Cl-induced passivity breakdown in α-Fe2O3 (0001), α-Cr2O3 (0001), and their interface: A DFT study[J]. J. Mater. Sci. Technol., 2022, 129: 70-78.
Fig. 1. Crystal structure and projected density of states (PDOS) of (a) α-Fe2O3 and (b) α-Cr2O3 bulk. The most favorable spin arrangements are also shown.
Lattice parameter, a (Å) | Lattice parameter, c (Å) | Magnetic moment, μB | Bandgap, Eg (eV) | |
---|---|---|---|---|
Fe2O3 | 5.074, 5.027a, 5.035b | 13.891, 13.724a, 13.67b | 4.15, 4.2c | 2.12, 2.1c |
Cr2O3 | 5.073, 5.06d, 5.05e | 13.840, 13.92d, 13.86e | 3.02, 3.05d, 3.10e | 2.83, 2.86d, 2.89e |
Table 1. Physical properties of α-Fe2O3 and α-Cr2O3.
Lattice parameter, a (Å) | Lattice parameter, c (Å) | Magnetic moment, μB | Bandgap, Eg (eV) | |
---|---|---|---|---|
Fe2O3 | 5.074, 5.027a, 5.035b | 13.891, 13.724a, 13.67b | 4.15, 4.2c | 2.12, 2.1c |
Cr2O3 | 5.073, 5.06d, 5.05e | 13.840, 13.92d, 13.86e | 3.02, 3.05d, 3.10e | 2.83, 2.86d, 2.89e |
α-Fe2O3(0001) | 2.31 | 1.54 | 1.30 |
α-Cr2O3(0001) | 3.50 | 2.01 | 1.52 |
Table 2. Energy barriers ($\text{ }\!\!\Delta\!\!\text{ }{{E}_{n-n+1}}$, eV) for Cl interlayer diffusion through O vacancies.
α-Fe2O3(0001) | 2.31 | 1.54 | 1.30 |
α-Cr2O3(0001) | 3.50 | 2.01 | 1.52 |
Fig. 8. α-Fe2O3/α-Cr2O3 (0001) interface structures for the (a) oxygen-divided (OD) and (b) split-metal (SM) interfaces. The Fe, Cr, and O ions are marked with brown, blue, and red disks, respectively.
Fig. 9. Electronic properties (a) 3D charge density difference (isovalue: 0.004 eV/?3), (b) plane-averaged charge density difference along z-direction, and (c) projected density of states of α-Fe2O3/α-Cr2O3 (0001) interface.
Fig. 10. Schematic diagram of (a) in-plane and (b) cross-plane diffusion paths for O or Cl diffusion through O vacancies at the interface. In the figure, red, brown and blue balls represent O, Fe and Cr atoms, respectively. Green balls represent the migrating O or Cl ion. The diffusion paths are shown by black arrows.
[1] | J.M. Cordeiro, B.E. Nagay, M.T. Mathew, V.A.R. Barao, R. Inamuddin, et al., Alloy Materials and Their Allied Applications, John Wiley & Sons, Inc., New Jersey, 2020. |
[2] |
N.E. Hakiki, Corros. Sci. 53 (2011) 2688-2699.
DOI URL |
[3] |
K.B. Fisher, B.D. Miller, E.C. Johns, E.A. Marquis, Corros. Sci. 141 (2018) 88-96.
DOI URL |
[4] |
L.T. Wang, A. Seyeux, P. Marcus, Corros. Sci. 165 (2020) 108395.
DOI URL |
[5] |
H.T. Zeng, Y. Yang, M.H. Zeng, M.C. Li, J. Mater. Sci. Technol. 66 (2021) 177-185.
DOI URL |
[6] |
D. Ramachandran, R. Egoavil, A. Crabbe, T.O.M. Hauffman, A. Abakumov, J. Ver- beeck, I. Vandendael, H. Terryn, D. Schryvers, J. Microsc. 264 (2016) 207-214.
DOI URL |
[7] |
L. Ma, F. Wiame, V. Maurice, P. Marcus, Appl. Surf. Sci. 494 (2019) 8-12.
DOI URL |
[8] | T. Li, J. Scully, G. Frankel, J. Electrochem. Soc. 165 (2018) C762-C770. |
[9] | P.M. Natishan, W.E. O’Grady, F. Martin, R.J. Rayne, H. Kahn, A.H. Heuer, J. Elec- trochem. Soc. 158 (2011) C7-C10. |
[10] | S.F. Deng, S.B. Wang, L.Y. Wang, J.T. Liu, Y.J. Wang, Int. J. Electrochem. Sci. 12 (2017) 1106-1117. |
[11] |
S.A. Saadi, Y.S. Yi, P. Cho, C. Jang, P. Beeley, Corros. Sci. 111 (2016) 720-727.
DOI URL |
[12] |
Y.F. Lu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 32 (2016) 341-348.
DOI URL |
[13] |
B. Zhang, X.X. Wei, B. Wu, J. Wang, X.H. Shao, L.X. Yang, S.J. Zheng, Y.T. Zhou, Q.Q. Jin, E.E. Oguzie, X.L. Ma, Corros. Sci. 154 (2019) 123-128.
DOI |
[14] |
J. Soltis, Corros. Sci. 90 (2015) 5-22.
DOI URL |
[15] |
T.P. Hoar, D.C. Mears, G.P. Rothwell, Corros. Sci. 5 (1965) 279-289.
DOI URL |
[16] |
D.D. Macdonald, J. Electrochem. Soc. 139 (1992) 3434-3449.
DOI URL |
[17] |
D.D. Macdonald, Electrochim. Acta 56 (2011) 1761-1772.
DOI URL |
[18] |
Y.H. Li, D.D. Macdonald, J. Yang, J. Qiu, S.Z. Wang, Corros. Sci. 163 (2020) 108280.
DOI URL |
[19] |
Y.W. Cui, L.Y. Chen, X.X. Liu, Curr. Nanosci. 17 (2021) 241-256.
DOI URL |
[20] | N. Sato, S.K. Sharma, Green Corrosion Chemistry and Engineering:Opportuni- ties and Challenges, John Wiley & Sons, Inc., New Jersey, 2011. |
[21] |
B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang, D. Chen, Y.C. Zhang, K. Du, E.E. Oguzie, X.L. Ma, Nat. Commun. 9 (2018) 2559.
DOI PMID |
[22] | M. Liu, Y. Jin, C. Leygraf, J. Pan, J. Electrochem. Soc. 166 (2019) C3124-C3130. |
[23] |
A. Bouzoubaa, B. Diawara, V. Maurice, C. Minot, P. Marcus, Corros. Sci. 51 (2009) 941-948.
DOI URL |
[24] | K. Oware Sarfo, P. Murkute, O.B. Isgor, Y. Zhang, J. Tucker, L. Árnadóttir, J. Elec- trochem. Soc. 167 (2020) 121508. |
[25] |
Q. Pang, H. DorMohammadi, O.B. Isgor, L. Árnadóttir, Corros. Sci. 154 (2019) 61-69.
DOI |
[26] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
DOI PMID |
[27] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[28] |
J. Hafner, J. Comput. Chem. 29 (2008) 2044-2078.
DOI URL |
[29] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[30] |
Z.H. Yang, J.W. Sun, J. Perdew, Phys. Rev. B 93 (2016) 205205.
DOI URL |
[31] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[32] |
S. Dudarev, G.A. Botton, S.Y. Savrasov, C. Humphreys, A.P. Sutton, Phys. Rev. B 57 (1998) 1505-1509.
DOI URL |
[33] |
Q. Pang, H. DorMohammadi, O.B. Isgor, L. Árnadóttir, Comput. Theor. Chem. 1100 (2017) 91-101.
DOI URL |
[34] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
[35] | G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113 (2000) 9901-9904. |
[36] | S.A. Fuente, L.F. Fortunato, C. Zubieta, R.M. Ferullo, P.G. Belelli, Mol. Catal. 446 (2018) 10-22. |
[37] |
Z.S. Mi, L. Chen, C.M. Shi, L. Gao, D.C. Wang, X.L. Li, H.M. Liu, L.J. Qiao, Appl. Surf. Sci. 475 (2019) 294-301.
DOI URL |
[38] |
R. Ivantsov, O. Ivanova, S. Zharkov, M. Molokeev, A. Krylov, I. Gudim, I. Edel- man, J. Magn. Magn. Mater. 498 (2020) 166208.
DOI URL |
[39] |
T. Lino, T. Moriyama, H. Lwaki, H. Aono, Y. Shiratsuchi, T. Ono, Appl. Phys. Lett. 114 (2019) 022402.
DOI URL |
[40] |
B. Gilbert, C. Frandsen, E. Maxey, D. Sherman, Phys. Rev. B 79 (2009) 035108. 1-035108.7.
DOI URL |
[41] |
A.K. Vijh, Corros. Sci. 12 (1972) 105-111.
DOI URL |
[42] |
R. Ovcharenko, E. Voloshina, J. Sauer, Phys. Chem. Chem. Phys. 18 (2016) 25560-25568.
PMID |
[43] |
C. Gray, Y. Lei, G. Wang, J. Appl. Phys. 120 (2016) 215101.
DOI URL |
[44] |
M.T. Nguyen, N. Seriani, R. Gebauer, ChemPhysChem 15 (2014) 2930-2935.
DOI URL |
[45] |
T. Pabisiak, A. Kiejna, J. Phys. Commun. 3 (2019) 035023.
DOI URL |
[46] |
A. Rohrbach, J. Hafner, G. Kresse, Phys. Rev. B 70 (2004) 125426.
DOI URL |
[47] |
T. Stirner, D. Scholz, J. Sun, Surf. Sci. 671 (2018) 11-16.
DOI URL |
[48] |
J. Sun, T. Stirner, A. Matthews, Surf. Coat. Technol. 201 (2006) 4205-4208.
DOI URL |
[49] |
A. Mahmoud, P.M. Deleuze, C. Dupont, J. Chem. Phys. 148 (2018) 204701.
DOI URL |
[50] |
M. Bender, D. Ehrlich, I.N. Yakovkin, F. Rohr, M. Baumer, H. Kuhlenbeck, H.J. Freund, V. Staemmler, J. Phys. Condens. Matter 7 (1995) 5289-5301.
DOI URL |
[51] | M.M. Waegele, H.Q. Doan, T. Cuk, J. Phys. Chem. C 118 (2014) 3426-3432. |
[52] |
J. Lee, S. Han, Phys. Chem. Chem. Phys. 15 (2013) 18906-18914.
DOI URL |
[53] |
P.P. Zhao, Y.W. Song, L.J. Shi, K.H. Dong, D.Y. Shan, E.H. Han, J. Mater. Sci. 56 (2021) 3510-3524.
DOI URL |
[1] | Jiakang Tian, Yongqing Shen, Peizhi Liu, Haixia Zhang, Bingshe Xu, Yanhui Song, Jianguo Liang, Junjie Guo. Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis [J]. J. Mater. Sci. Technol., 2022, 127(0): 1-18. |
[2] | Yanyu Song, Duo Liu, Guobiao Jin, Haitao Zhu, Naibin Chen, Shengpeng Hu, Xiaoguo Song, Jian Cao. Fabrication of Si3N4/Cu direct-bonded heterogeneous interface assisted by laser irradiation [J]. J. Mater. Sci. Technol., 2022, 99(0): 169-177. |
[3] | Z.Q. Chen, M.C. Li, J.S. Cao, F.C. Li, S.W. Guo, B.A. Sun, H.B. Ke, W.H. Wang. Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2022, 99(0): 178-183. |
[4] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[5] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
[6] | Jiangshao Yang, Liwen Liu, Daoyi Wang, Jianming Tao, Yanming Yang, Jiaxin Li, Yingbin Lin, Zhigao Huang. Boosting K-ion kinetics by interfacial polarization induced by amorphous MoO3-x for MoSe2/MoO3-x@rGO composites [J]. J. Mater. Sci. Technol., 2022, 115(0): 232-240. |
[7] | Eun-Ae Choi, Seung Zeon Han, Hyung Giun Kim, Jee Hyuk Ahn, Sung Hwan Lim, Sangshik Kim, Nong-Moon Hwang, Kwangho Kim, Jehyun Lee. Coherent interface driven super-plastic elongation of brittle intermetallic nano-fibers at room temperature [J]. J. Mater. Sci. Technol., 2022, 115(0): 97-102. |
[8] | Zhuang Tang, Kai Ning, Zhiyao Fu, Ze Lian, Kangning Wu, Shoudao Huang. Significantly enhanced varistor properties of CaCu3Ti4O12 based ceramics by designing superior grain boundary: Deepening and broadening interface states [J]. J. Mater. Sci. Technol., 2022, 108(0): 82-89. |
[9] | Fupeng Huo, Zhi Jin, Duy Le Han, Jiahui Li, Keke Zhang, Hiroshi Nishikawa. Novel interface regulation of Sn1.0Ag0.5Cu composite solders reinforced with modified ZrO2: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 125(0): 157-170. |
[10] | Zhi Zhao, Fawei Tang, Chao Hou, Xintao Huang, Xiaoyan Song. Uncover the mystery of interfacial interactions in immiscible composites by spectroscopic microscopy: A case study with W-Cu [J]. J. Mater. Sci. Technol., 2022, 126(0): 106-115. |
[11] | Y.F. Zhao, H.H. Chen, D.D. Zhang, J.Y. Zhang, Y.Q. Wang, K. Wu, G. Liu, J. Sun. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu [J]. J. Mater. Sci. Technol., 2022, 116(0): 199-213. |
[12] | Xiaoyang Yi, Bin Sun, Kuishan Sun, Haizhen Wang, Shangzhou Zhang, Zhiyong Gao, Xianglong Meng. Revealing the interface structure of {111} type I twin in Ti-Ni-Hf shape memory alloy composite [J]. J. Mater. Sci. Technol., 2022, 105(0): 237-241. |
[13] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[14] | Guanshui Ma, Dong Zhang, Peng Guo, Hao Li, Yang Xin, Zhenyu Wang, Aiying Wang. Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates [J]. J. Mater. Sci. Technol., 2022, 105(0): 36-44. |
[15] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||